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What will this talk be about?

Metamathematics (of first-order logic):
Mostly negative results: undecidability and incompleteness∗

Sketch positive results: completeness and (relative) consistency†

Constructive type theory:
Basic concepts of the calculus of inductive constructions (CIC)‡

Implementation in the Coq proof assistant§

Synthetic computability¶

∗Tarski (1953); Gödel (1931)
†Gödel (1930); Werner (1997)
‡Coquand and Huet (1986); Paulin-Mohring (1993)
§The Coq Development Team (2021)
¶Richman (1983); Bauer (2006)
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Framework:
Synthetic Undecidability∗

∗Yannick Forster, K., and Gert Smolka at CPP’19.
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How to mechanise decidability?

Conventional approach:
Pick a concrete model of computation
(Turing machines, µ-recursive functions, untyped λ-calculus, etc.)
Invent a decision procedure for the given problem
Explicitly code the algorithm in the chosen model!

Synthetic approach (Richman (1983); Bauer (2006)):
Work in a constructive foundation, e.g. constructive type theory
Define a decision procedure e.g. as a Boolean function
Definable functions are computable, so that’s it!

(Similar for other notions like enumerability and reducibility)
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How to mechanise undecidability?

Problem of the synthetic approach:
Constructive type theories like CIC are consistent with classical
assumptions, rendering every problem decidable
Proving a given problem undecidable is not outright possible

Possible solutions:
Resort to a concrete model of computation
Verify a synthetic reduction from an undecidable problem

I Computability axioms could be used to obtain expected results

(Again similar for other negative notions of computability theory)
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Coq’s Type Theory

Main features of Coq’s underlying CIC:

Standard type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Inductive types: B, N, lists L(X ), options O(X ), vectors X n, ...

Propositional universe P with logical connectives: →, ∧, ∨, ∀, ∃

P is impredicative and separate from computational types

All definable functions N→ N are computable!
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Decidability and Enumerability

A problem interpreted as a predicate p : X → P on a type X is
decidable if there is a function f : X → B with

∀x . p x ↔ f x = tt,

enumerable if there is a function f : N→ O(X ) with

∀x . p x ↔ ∃n. f n = pxq.

Fact
Let p : X → P be a predicate, then p is

decidable iff ∀x . p x + ¬p x is inhabited and
enumerable iff there is L : N→ L(X ) s.t. ∀x . p x ↔ ∃n. x ∈ L n.
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Data Types

Computability theory is usually developed on computational domains.

A type X is called
enumerable if λx .> is enumerable,
discrete if λxy . x = y is decidable, and
data type if it is both enumerable and discrete.

Fact
Decidable predicates p on data types X are enumerable and co-enumerable.

Proof.
Let fX : N→ O(X ) enumerate X and fp : X → B decide p. Then

f n := match fX n with pxq⇒ if fp x then pxq else ∅ | ∅ ⇒ ∅

defines an enumerator for p.
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Post’s Theorem

Theorem
Let p on a data type X be enumerable and co-enumerable. If p is also
logically decidable, i.e. ∀x . p x ∨ ¬p x , then it is decidable.

Proof.

Let f enumerate p and g enumerate its complement p.
∀x .∃n. f n = pxq ∨ g n = pxq by logical decidability.
For given x , corresponding n can be computed by linear search.
Disjunction f n = pxq ∨ g n = pxq lacks computational information.
Use discreteness to computably compare pxq with f n and g n.
Obtain decision whether p x or ¬p x .
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Many-One Reductions

Given predicates p : X → P and q : Y → P we call a function f : X → Y a
(many-one) reduction from p to q if

∀x . p x ↔ q (f x).

We write p 4 q if a reduction from p to q exists.

Theorem (Reduction)

Let p and q be predicates on data types with p 4 q.
If q is decidable/enumerable/co-enumerable, then so is p.
If p is not co-enumerable, then q is not co-enumerable.

Proof.
If f witnesses p 4 q and g decides q, then g ◦ f decides p.
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The Post Correspondence Problem

Intuition: given a stack S of cards s/t, find a derivable match.
This (undecidable) problem can be expressed by an inductive predicate:

s/t ∈ S

S . s/t

S . u/v s/t ∈ S

S . su/tv

S . s/s

PCP S

Fact
The type S of stacks is a data type and PCP is enumerable.

Proof.
The former follows from closure properties and for the latter

L 0 := []

L (S n) := L n++ [(S , (s, t)) | S ∈ LS n, (s, t) ∈ S ]

++ [(S , (su, tv)) | (S , (u, v)) ∈ L n, (s, t) ∈ S ]

defines a list enumerator for λSst.S . s/t.
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Coq Library of Undecidability Proofs∗

Merge of a few initial Coq developments:
I Computablity theory using a cbv. lambda calculus
I Synthetic computability
I Initial undecidability proofs

Extended with further undecidability reductions over past 3 years

Unified framework to ease external contribution

11+ contributors and more than 100k lines of code

14+ related publications (ITP, CPP, IJCAR, FSCD, etc.)

Currently roughly 13 (groups of) undecidable problems

∗https://github.com/uds-psl/coq-library-undecidability
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Library Overview (Forster et al. (2020b))
λ

TM

SR

PCP

stack/register machines

FRACTRAN

H10

µ-rec

FOL

CFG

System F

HOU

ILL

Classification in seed problems and target problems
This talk: mostly the PCP → FOL edge, a bit of H10 → FOL
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Example 1:
The Entscheidungsproblem∗

∗Yannick Forster, K., and Gert Smolka at CPP’19.
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General Idea

Given a FOL formula ϕ, is ϕ valid in all models?

Conventional outline following Turing:
Encode Turing machine M as formula ϕM over custom signature
Verify that M halts if and only if ϕM holds in all models
(Argue why the used signature could have been minimised)

Our outline:
Follow the simpler proof given in Manna (2003) using PCP
Also don’t bother with signature minimisation yet...
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Syntax and Tarski Semantics

Terms and formulas are defined for a fixed signature:

τ : Term := x | a | e | ftt τ | fff τ x , a : N
ϕ,ψ : Form := ⊥̇ | Q | P τ1 τ2 | ϕ→̇ψ | ∀̇x . ϕ

Formulas are interpreted in models I = (D, η, eI , f Itt , f
I
ff ,Q

I ,PI)
given a variable environment ρ : N→ D:

I �ρ ⊥̇ := ⊥
I �ρ Q := QI

I �ρ P τ1 τ2 := PI (ρ̂ τ1) (ρ̂ τ2)

I �ρ ϕ→̇ψ := I �ρ ϕ→ I �ρ ψ
I �ρ ∀̇x . ϕ := ∀d : D. I �ρ[x :=d ] ϕ

A formula ϕ is valid if I �ρ ϕ for all I and ρ.
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A Standard Model

Strings can be encoded as terms, e.g. tt ff ff tt = ftt (fff (fff (ftt (e)))).

The standard model B over the type L(B) of Boolean strings captures
exactly the cards derivable from a fixed stack S :

eB := [] QB := PCPS

f Bb s := b :: s PB s t := S . s/t.

Lemma
Let ρ : N→ L(B) be an environment for the standard model B.
Then ρ̂ s = s and B �ρ P τ1 τ2 ↔ S . ρ̂ τ1/ρ̂ τ2.
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Undecidability of Validity
We express the constructors of S . s/t and PCP as formulas:

ϕ1 := [P s t | s/t ∈ S ]

ϕ2 := [ ∀̇xy .P x y→̇P (sx) (ty) | s/t ∈ S ]

ϕ3 := ∀̇x .P x x→̇Q

ϕS := ϕ1→̇ϕ2→̇ϕ3→̇Q

Theorem
PCPS iff ϕS is valid, hence PCP reduces to validity.

Proof.
Let ϕS be valid, so in particular B � ϕS . Since B satisfies all of ϕ1, ϕ2,
and ϕ3 it follows that B � Q and thus PCP S .
Now suppose that S . s/s for some s and that some model I satisfies all of
ϕ1, ϕ2, and ϕ3. Then I � P s s by ϕ1 and ϕ2, hence I � Q by ϕ3, and
thus I � ϕS .
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Undecidability of Satisfiability

Disclaimer: validity does not directly reduce to (co-)satisfiability!
If ϕ is valid, then certainly ¬̇ϕ is unsatisfiable
However, the converse does not hold constructively

Fortunately, we can give a direct reduction from the complement of PCP:

Theorem
¬PCPS iff ¬̇ϕS is satisfiable, hence co-PCP reduces to satisfiability.

Proof.
If ¬PCP S , then B � ¬̇ϕS since B � ϕS would yield PCPS as before.
Now suppose there are I and ρ with I `ρ ¬̇ϕS . Then assuming PCPS
yields the contradiction that ϕS is valid.
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Interlude: Completeness Theorems for FOL

Completeness of deduction systems for FOL relies on Markov’s principle:

MP := ∀f : N→ B.¬¬(∃n. f n = tt)→ ∃n. f n = tt

MP is independent but admissible in Coq’s type theory∗

Theorem (cf. Yannick Forster, K., and Dominik Wehr at LFCS’20.)

T � ϕ implies ¬¬(T `c ϕ) for all T : Form→ P and ϕ : Form
If T is enumerable, then MP is equivalent to the stability of T `c ϕ

⇒ Completeness for enumerable T is equivalent to MP and admissible

Possible strategies:
a) Verify a weak reduction from PCP integrating the double negation
b) Obtain a standard reduction by proving A `c ϕS by hand (done so far)

∗Coquand/Mannaa ’17, Pédrot/Tabareau ’18
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Undecidability of Minimal Provability

We define a minimal natural deduction system inductively:

ϕ ∈ A

A ` ϕ A
ϕ :: A ` ψ
A ` ϕ→̇ψ II

A ` ϕ→̇ψ A ` ϕ
A ` ψ IE

A ` ϕx
a a 6∈ P(ϕ) ∪ P(A)

A ` ∀̇x . ϕ
AI

A ` ∀̇x . ϕ V(τ) = ∅
A ` ϕx

τ
AE

A formula ϕ is provable if ` ϕ.

Fact (Soundness)

A ` ϕ implies A � ϕ, so provable formulas are valid.

Theorem

PCP S iff ϕS is provable. (proving ` ϕS by hand)
Provability is enumerable. (by giving a list enumerator)
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Undecidability of Classical Provability

We extend the deduction system by classical double negation elimination:

A `c ¬̇¬̇ϕ
A `c ϕ

DN

Unfortunately, this rule is not sound constructively!

As a remedy, we define a Gödel-Gentzen-Friedman translation ϕQ of
formulas ϕ such that A `c ϕ implies AQ ` ϕQ .

Theorem
PCPS iff ϕS is classically provable, hence PCP reduces to classical ND.

Proof.
If PCP S then ` ϕS by the previous theorem and hence `c ϕS . Conversely,
let `c ϕS and hence ` ϕQ

S . Then by soundness B � ϕQ
S which still implies

B � Q and PCP S as before.
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Example 2:
Trakhtenbrot’s Theorem∗

∗K. and Dominique Larchey-Wendling at IJCAR’20.
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General idea

Given a FOL formula ϕ, is ϕ finitely satisfiable?

Textbook proofs by dual reduction from the halting problem:∗

Encode Turing machine M as formula ϕM over custom signature
Verify that the models of ϕM correspond to the runs of M
Conclude that M halts if and only if ϕM has a finite model

Our mechanisation:
Illustrates that one can still use PCP for a simpler reduction
Signature minimisations are constructive for finite models

∗e.g. Libkin (2010); Börger et al. (1997)
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First-Order Satisfiability over Signatures
Given a signature Σ = (FΣ;PΣ), we represent terms and formulas by:

t : TermΣ ::= x | f ~t (x : N, f : FΣ, ~t : Term
|f |
Σ )

ϕ,ψ : FormΣ ::= ⊥̇ | P ~t | ϕ �̇ψ | ∇̇ϕ (P : PΣ, ~t : Term
|P|
Σ )

A modelM over a domain D is a pair of interpretation functions:

−M : ∀f : FΣ.D
|f | → D −M : ∀P : PΣ.D

|P| → P

For assignments ρ : N→ D define evaluation ρ̂ t and satisfactionM �ρ ϕ:
ρ̂ x := ρx ρ̂ (f ~t ) := fM (ρ̂ ~t )

M �ρ ⊥̇ := ⊥ M �ρ ϕ �̇ψ := M �ρ ϕ �M �ρ ψ

M �ρ P ~t := PM (ρ̂ ~t ) M �ρ ∇̇ϕ := ∇a : D.M �a·ρ ϕ

SAT(Σ)ϕ := there areM and ρ such thatM �ρ ϕ
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Finiteness in Constructive Type Theory

Definition
A type X is finite if there exists a list lX with x ∈ lX for all x : X .

This seems to be a good compromise:
Easy to establish and work with
Does not enforce discreteness
Enough to get expected properties:

I Every strict order on a finite type is well-founded
I Every finite decidable equivalence relation admits a quotient on Fn

FSAT(Σ)ϕ if additionally D is finite and all PM are decidable

FSATEQ(Σ;≡)ϕ if x ≡M y ↔ x = y for all x , y : D (hence discrete)

Dominik Kirst Formalising Metamathematics September 14th, 2021 27



Encoding the Post Correspondence Problem

We use the signature ΣBPCP := ({?0, e0, f 1tt , f 1ff }; {P2,≺2,≡2}):

Chains like fff(ftt(e)) represent strings while ? signals overflow

P concerns only defined values and ≺ is a strict ordering:

ϕP := ∀̇xy .P x y →̇ x 6≡ ? ∧̇ y 6≡ ?
ϕ≺ := (∀̇x . x 6≺ x) ∧̇ (∀̇xyz . x ≺ y →̇ y ≺ z →̇ x ≺ z)

Sanity checks on f regarding overflow, disjointness, and injectivity:

ϕf :=

 ftt ? ≡ ? ∧̇ fff ? ≡ ?
∀̇x . ftt x 6≡ e

∀̇x . fff x 6≡ e

 ∧̇
 ∀̇xy . ftt x 6≡ ? →̇ ftt x ≡ ftt y →̇ x ≡ y

∀̇xy . fff x 6≡ ? →̇ fff x ≡ fff y →̇ x ≡ y

∀̇xy . ftt x ≡ fff y →̇ ftt x ≡ ? ∧̇ fff y ≡ ?


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Trakhtenbrot’s Theorem
Given an instance R of PCP, we construct a formula ϕR by:

ϕR := ϕP ∧̇ ϕ≺ ∧̇ ϕf ∧̇ ϕ. ∧̇ ∃̇x .P x x

Crucially, we enforce that P satisfies the inversion principle of R . (s, t):

ϕ. := ∀̇xy .P x y →̇
.∨

(s,t)∈R

∨̇
{
x ≡ s ∧̇ y ≡ t

∃̇uv .P u v ∧̇ x ≡ su ∧̇ y ≡ tv ∧̇ u/v ≺ x/y

Theorem
PCPR iff FSATEQ(ΣBPCP;≡)ϕR , hence PCP 4 FSATEQ(ΣBPCP;≡).

Proof.
If R has a solution of length n, then ϕR is satisfied by the model of strings of
length bounded by n. Conversely, ifM �ρ ϕR we can extract a solution of R from
ϕ. by well-founded induction on ≺M (which is applicable sinceM is finite).
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Signature Transformations

Given a finite and discrete signature Σ with arities bounded by n, we have:

FSATEQ(Σ;≡) 4 FSAT(Σ) 4 FSAT(0;Pn+2) 4 FSAT(0;∈2)

First reduction: axiomatise that ≡ is a congruence for the symbols in Σ

Second reduction:
Encode k-ary functions as (k + 1)-ary relations
Align the relation arities to be constantly n + 1
Merge relations into a single (n + 2)-ary relation indexed by constants
Interpret constants with fresh variables

Caveat: intermediate reductions may rely on discrete models...
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Discrete Models

FSAT′(Σ)ϕ if FSAT(Σ)ϕ on a discrete model

Can every finite modelM be transformed to a discrete finite modelM′?

Idea: first-order indistinguishability x=̇y := ∀ϕρ.M �x ·ρ ϕ↔M �y ·ρ ϕ

Lemma
The relation x=̇y is a decidable congruence for the symbols in Σ.

Fact
FSAT′(Σ)ϕ iff FSAT(Σ)ϕ, hence in particular FSAT′(Σ)ϕ 4 FSAT(Σ)ϕ.

Proof.
IfM �ρ ϕ pickM′ to be the quotient ofM under x=̇y .
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Compressing Relations: FSAT(0;Pn) 4 FSAT(0;∈2)
Intuition: encode P x1 . . . xn as (x1, . . . , xn) ∈ p for a set p representing P

So let’s play set theory! For a set d representing the domain we define ϕ′∈:

(P x1 . . . xn)′∈ := “(x1, . . . , xn) ∈ p” (∀̇z . ϕ)′∈ := ∀̇z . z ∈ d →̇ (ϕ)′∈
(ϕ �̇ ψ)′∈ := (ϕ)′∈ �̇ (ψ)′∈ (∃̇z . ϕ)′∈ := ∃̇z . z ∈ d ∧̇ (ϕ)′∈

Then ϕ∈ is ϕ′∈ plus asserting ∈ to be extensional and d to be non-empty.

Fact
FSAT(0;Pn)ϕ iff FSAT(0;∈2)ϕ∈, hence FSAT(0;Pn) 4 FSAT(0;∈2).

Proof.
The hard direction is to construct a model of ϕ∈ given a modelM of ϕ.
We employ a segment of the model of hereditarily finite sets by Smolka and
Stark (2016) large enough to accommodateM.
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Full Signature Classification

Composing all signature transformations verified we obtain:

Theorem
If Σ contains either an at least binary relation or a unary relation together
with an at least binary function, then PCP reduces to FSAT(Σ).

On the other hand, FSAT for monadic signatures remains decidable:

Theorem
If Σ is discrete and has all arities bounded by 1 or if all relation symbols
have arity 0, then FSAT(Σ) is decidable.

In any case, since one can enumerate all finite models up to extensionality:

Fact
If Σ is discrete and enumerable, then FSAT(Σ) is enumerable.

Dominik Kirst Formalising Metamathematics September 14th, 2021 33



Example 3:
First-Order Axiom Systems∗

∗K. and Marc Hermes at ITP’21.
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General Idea

Is a formula ϕ entailed by an axiomatisation A?

Strategy if A is strong enough to capture computation:
Encode Turing machine M as formula ϕM

Verify that M halts iff A � ϕM

Verify that M halts iff A ` ϕM (→ direction by hand)
Instead of TM use problems suitable to encode in A

As hard as consistency and incompleteness:
Reducing a non-trivial problem P to A ` ϕ shows A consistent
Undecidability implies incompleteness for enumerable axiomatisations
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Connections to Consistency and Incompleteness

Fact (Consistency)

If p � A` and there is x with ¬p x then A 6` ⊥.

Proof.
Let f witness p � A`. Then A 6` f x by ¬p x and thus A 6` ⊥.

Fact (Synthetic Incompleteness)

If A is complete (∀ϕ.A ` ϕ∨A ` ¬ϕ) and consistent, then A` is decidable.

Proof.
By application of Post’s theorem. The premises are enumerability of A`

(immediate), enumerability of its complement (as A 6` ϕ iff A ` ¬ϕ), and
logical decidability of A` (as A ` ϕ ∨ A ` ¬ϕ implies A ` ϕ ∨ A 6` ϕ).
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Sketch for Peano Arithmetic

Use axiomatisation PA over standard signature (0, S,+, · ;≡).

Diophantine constraints (cf. Larchey-Wendling and Forster (2019)):
Instances are lists L of constraints xi = 1 | xi + xj = xk | xi · xj = xk
L is solvable if there is an evaluation η : N→ N solving all constraints

Theorem
L = [c1, . . . , ck ] with maximal index xn is solvable iff PA � ∃nc1 ∧ · · · ∧ ck .

Proof.
If L has solution η instantiate the existential quantifiers with numerals
η1, . . . , ηn. Then the axioms of PA entail the constraints.
If PA � ∃nc1 ∧ · · · ∧ ck use the standard model N to extract solution η.

Fact
L = [c1, . . . , ck ] with maximal index xn is solvable iff PA ` ∃nc1 ∧ · · · ∧ ck .
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Interlude: Models of ZF
Sets-as-trees interpretation (Aczel (1978)):

Type T of well-founded trees with constructor τ : ∀X . (X → T )→ T
Equality of trees s, t given by isomorphism s ≈ t

Membership defined by s ∈ τ X f := ∃x . s ≈ f x

Set operations implemented by tree operations:
I ∅ := τ ⊥ elim⊥
I {s, t} := τ B (λb. if b then s else t)
I ω := τ N (λn. n) where 0 := ∅ and S n := n ∪ {n}
I ...

Axioms needed in Coq:
EM to really interpret ZF instead of IZF
Replacement needs a type-theoretical choice axiom (Werner (1997))
Strong quotient axiom for (T ,≈) suffices (Kirst and Smolka (2019))
This yields a well-behaved model S: quotiented, standard numbers
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Sketch for ZF Set Theory
Use axiomatisation ZF over explicit signature (∅, {_,_},

⋃
,P, ω ;≡,∈).

Reduction from PCP:
Boolean encoding: tt = {∅} and ff = ∅
String encoding: tt ff ff tt = (tt, (ff, (tt, (ff, ∅))))

Stack encoding: S = {(s1, t1), . . . , (sk , tk)}
Combination encoding: S ++B :=

⋃
s/t∈S{(sx , ty) | (x , y) ∈ B}

f . n := (∅, S) ∈ f ∧ ∀(k,B) ∈ f . k ∈ n→ (k + 1,S ++B) ∈ f

ϕS := ∃f , n,B, x . n ∈ ω ∧ f . n ∧ (n,B) ∈ f ∧ (x , x) ∈ B

Theorem
PCPS iff ZF � ϕS and PCP S iff ZF ` ϕS .

Proof.
Direction → by proofs in ZF and ← relies on standard model S.
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Conclusion
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Ongoing and Future Work

Undecidability and incompleteness of finitary set theories

Minimalistic undecidability proof for the binary signature

Undecidability and incompleteness of second-order logic

Constructive analysis of Tennenbaum’s theorem

Engineering: tool support, connect Coq developments
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Take-Home Messages

Synthetic computability: elegant formalism, feasible to mechanise

Metamathematics: rewarding to revisit in constructive type theory

Coq mechanisation: implements constructive proofs as algorithms

If you work on undecidability proofs in Coq:
Our library could help you and is open for contributions

Thank You!
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