Formalising Metamathematics in Constructive Type Theory

Synthetic Undecidability and Incompleteness

Dominik Kirst

Proof and Computation September 14th, 2021

What will this talk be about?

Metamathematics (of first-order logic):

- Mostly negative results: undecidability and incompleteness*
- Sketch positive results: completeness and (relative) consistency[†]

Constructive type theory:

- Basic concepts of the calculus of inductive constructions (CIC)[‡]
- Implementation in the Coq proof assistant§
- Synthetic computability

^{*}Tarski (1953); Gödel (1931)

[†]Gödel (1930); Werner (1997)

[‡]Coquand and Huet (1986); Paulin-Mohring (1993)

[§]The Coq Development Team (2021)

[¶]Richman (1983); Bauer (2006)

Outline

- Framework: Synthetic Undecidability
- Example 1: The Entscheidungsproblem
- Example 2: Trakhtenbrot's Theorem
- Example 3: First-Order Axiom Systems
- Conclusion

Framework: Synthetic Undecidability*

How to mechanise decidability?

Conventional approach:

- Invent a decision procedure for the given problem
- Explicitly code the algorithm in the chosen model!

Synthetic approach (Richman (1983); Bauer (2006)):

- Work in a constructive foundation, e.g. constructive type theory
- Define a decision procedure e.g. as a Boolean function
- Definable functions are computable, so that's it!

(Similar for other notions like enumerability and reducibility)

How to mechanise undecidability?

Problem of the synthetic approach:

- Constructive type theories like CIC are consistent with classical assumptions, rendering every problem decidable
- Proving a given problem undecidable is not outright possible

Possible solutions:

- Resort to a concrete model of computation
- Verify a synthetic reduction from an undecidable problem
 - Computability axioms could be used to obtain expected results

(Again similar for other negative notions of computability theory)

Coq's Type Theory

Main features of Coq's underlying CIC:

- Standard type formers: $X \to Y$, $X \times Y$, X + Y, $\forall x. F x$, $\Sigma x. F x$
- Inductive types: \mathbb{B} , \mathbb{N} , lists $\mathcal{L}(X)$, options $\mathcal{O}(X)$, vectors X^n , ...
- Propositional universe \mathbb{P} with logical connectives: \rightarrow , \wedge , \vee , \forall , \exists
- lacktriangleright Is impredicative and separate from computational types

All definable functions $\mathbb{N} \to \mathbb{N}$ are computable!

Decidability and Enumerability

A problem interpreted as a predicate $p: X \to \mathbb{P}$ on a type X is decidable if there is a function $f: X \to \mathbb{B}$ with

$$\forall x. px \leftrightarrow fx = tt$$
,

enumerable if there is a function $f: \mathbb{N} \to \mathcal{O}(X)$ with

$$\forall x. px \leftrightarrow \exists n. f \ n = \lceil x \rceil.$$

Fact

Let $p: X \to \mathbb{P}$ be a predicate, then p is

- decidable iff $\forall x. px + \neg px$ is inhabited and
- enumerable iff there is $L : \mathbb{N} \to \mathcal{L}(X)$ s.t. $\forall x. px \leftrightarrow \exists n. x \in L n$.

Data Types

Computability theory is usually developed on computational domains.

A type X is called

- \blacksquare enumerable if λx . \top is enumerable,
- discrete if λxy . x = y is decidable, and
- data type if it is both enumerable and discrete.

Fact

Decidable predicates p on data types X are enumerable and co-enumerable.

Proof.

Let $f_X : \mathbb{N} \to \mathcal{O}(X)$ enumerate X and $f_p : X \to \mathbb{B}$ decide p. Then

$$f n := \mathsf{match} \ f_X \ n \ \mathsf{with} \ \lceil X \rceil \Rightarrow \mathsf{if} \ f_D X \ \mathsf{then} \ \lceil X \rceil \ \mathsf{else} \ \emptyset \ | \ \emptyset \Rightarrow \emptyset$$

defines an enumerator for p.

Post's Theorem

Theorem

Let p on a data type X be enumerable and co-enumerable. If p is also logically decidable, i.e. $\forall x. px \lor \neg px$, then it is decidable.

Proof.

- Let f enumerate p and g enumerate its complement \overline{p} .
- $\forall x$. $\exists n$. f $n = \lceil x \rceil \lor g$ $n = \lceil x \rceil$ by logical decidability.
- For given x, corresponding n can be computed by linear search.
- Disjunction f $n = \lceil x \rceil \lor g$ $n = \lceil x \rceil$ lacks computational information.
- Use discreteness to computably compare $\lceil x \rceil$ with f n and g n.
- Obtain decision whether px or $\neg px$.

Many-One Reductions

Given predicates $p:X\to\mathbb{P}$ and $q:Y\to\mathbb{P}$ we call a function $f:X\to Y$ a (many-one) reduction from p to q if

$$\forall x. px \leftrightarrow q(fx).$$

We write $p \leq q$ if a reduction from p to q exists.

Theorem (Reduction)

Let p and q be predicates on data types with $p \leq q$.

- If q is decidable/enumerable/co-enumerable, then so is p.
- If p is not co-enumerable, then q is not co-enumerable.

Proof.

If f witnesses $p \leq q$ and g decides q, then $g \circ f$ decides p.

The Post Correspondence Problem

Intuition: given a stack S of cards s/t, find a derivable match.

This (undecidable) problem can be expressed by an inductive predicate:

$$\frac{s/t \in S}{S \triangleright s/t}$$

$$\frac{S \triangleright u/v \quad s/t \in S}{S \triangleright su/tv}$$

$$\frac{S \triangleright s/s}{\mathsf{PCP}\ S}$$

Fact

The type $\mathbb S$ of stacks is a data type and PCP is enumerable.

Proof.

The former follows from closure properties and for the latter

$$L 0 := []$$

$$L (S n) := L n + [(S, (s, t)) | S \in L_S n, (s, t) \in S] + [(S, (su, tv)) | (S, (u, v)) \in L n, (s, t) \in S]$$

defines a list enumerator for $\lambda Sst. S \triangleright s/t$.

Coq Library of Undecidability Proofs*

- Merge of a few initial Coq developments:
 - Computablity theory using a cbv. lambda calculus
 - Synthetic computability
 - ► Initial undecidability proofs
- Extended with further undecidability reductions over past 3 years
- Unified framework to ease external contribution
- 11+ contributors and more than 100k lines of code
- 14+ related publications (ITP, CPP, IJCAR, FSCD, etc.)
- Currently roughly 13 (groups of) undecidable problems

 $^{{\}rm *https://github.com/uds-psl/coq-library-undecidability}$

Library Overview (Forster et al. (2020b))

- Classification in seed problems and target problems
- This talk: mostly the PCP \rightarrow FOL edge, a bit of H10 \rightarrow FOL

Example 1: The Entscheidungsproblem*

General Idea

Given a FOL formula φ , is φ valid in all models?

Conventional outline following Turing:

- **E**ncode Turing machine M as formula φ_M over custom signature
- Verify that M halts if and only if φ_M holds in all models
- (Argue why the used signature could have been minimised)

Our outline:

- Follow the simpler proof given in Manna (2003) using PCP
- Also don't bother with signature minimisation yet...

Syntax and Tarski Semantics

Terms and formulas are defined for a fixed signature:

$$\begin{split} \tau : \mathsf{Term} := x \mid a \mid e \mid f_\mathsf{tt} \, \tau \mid f_\mathsf{ff} \, \tau \quad x, a : \mathbb{N} \\ \varphi, \psi : \mathsf{Form} := \dot{\bot} \mid Q \mid P \, \tau_1 \, \tau_2 \mid \varphi \dot{\to} \psi \mid \dot{\forall} x. \, \varphi \end{split}$$

Formulas are interpreted in models $\mathcal{I} = (D, \eta, e^{\mathcal{I}}, f_{\mathsf{ft}}^{\mathcal{I}}, f_{\mathsf{ff}}^{\mathcal{I}}, Q^{\mathcal{I}}, P^{\mathcal{I}})$ given a variable environment $\rho : \mathbb{N} \to D$:

$$\mathcal{I} \vDash_{\rho} \dot{\bot} := \bot$$

$$\mathcal{I} \vDash_{\rho} Q := Q^{\mathcal{I}}$$

$$\mathcal{I} \vDash_{\rho} P \tau_{1} \tau_{2} := P^{\mathcal{I}} (\hat{\rho} \tau_{1}) (\hat{\rho} \tau_{2})$$

$$\mathcal{I} \vDash_{\rho} \varphi \dot{\to} \psi := \mathcal{I} \vDash_{\rho} \varphi \to \mathcal{I} \vDash_{\rho} \psi$$

$$\mathcal{I} \vDash_{\rho} \dot{\forall} x. \varphi := \forall d : D. \mathcal{I} \vDash_{\rho[x := d]} \varphi$$

A formula φ is valid if $\mathcal{I} \vDash_{\rho} \varphi$ for all \mathcal{I} and ρ .

A Standard Model

Strings can be encoded as terms, e.g. $\overline{\operatorname{tt}\,\mathrm{ff}\,\mathrm{ff}\,\mathrm{tt}}=f_{\mathrm{tt}}\,(f_{\mathrm{ff}}\,(f_{\mathrm{ft}}\,(e)))).$

The standard model \mathcal{B} over the type $\mathcal{L}(\mathbb{B})$ of Boolean strings captures exactly the cards derivable from a fixed stack S:

$$e^{\mathcal{B}} := []$$
 $Q^{\mathcal{B}} := PCPS$ $f_b^{\mathcal{B}} s := b :: s$ $P^{\mathcal{B}} s t := S \triangleright s/t.$

Lemma

Let $\rho: \mathbb{N} \to \mathcal{L}(\mathbb{B})$ be an environment for the standard model \mathcal{B} . Then $\hat{\rho} \, \overline{s} = s$ and $\mathcal{B} \vDash_{\rho} P \, \tau_1 \, \tau_2 \leftrightarrow S \rhd \hat{\rho} \, \tau_1 / \hat{\rho} \, \tau_2$.

Undecidability of Validity

We express the constructors of $S \triangleright s/t$ and PCP as formulas:

$$\varphi_{1} := [P \overline{s} \overline{t} \mid s/t \in S]$$

$$\varphi_{2} := [\dot{\forall} xy. P x y \dot{\rightarrow} P (\overline{s}x) (\overline{t}y) \mid s/t \in S]$$

$$\varphi_{3} := \dot{\forall} x. P x x \dot{\rightarrow} Q$$

$$\varphi_{5} := \varphi_{1} \dot{\rightarrow} \varphi_{2} \dot{\rightarrow} \varphi_{3} \dot{\rightarrow} Q$$

Theorem

PCP S iff φ_S is valid, hence PCP reduces to validity.

Proof.

Let φ_S be valid, so in particular $\mathcal{B} \vDash \varphi_S$. Since \mathcal{B} satisfies all of φ_1 , φ_2 , and φ_3 it follows that $\mathcal{B} \vDash Q$ and thus PCP S.

Now suppose that $S \triangleright s/s$ for some s and that some model \mathcal{I} satisfies all of φ_1 , φ_2 , and φ_3 . Then $\mathcal{I} \models P \overline{s} \overline{s}$ by φ_1 and φ_2 , hence $\mathcal{I} \models Q$ by φ_3 , and thus $\mathcal{I} \models \varphi_5$.

Undecidability of Satisfiability

Disclaimer: validity does not directly reduce to (co-)satisfiability!

- lacksquare If φ is valid, then certainly $\dot{\neg}\varphi$ is unsatisfiable
- However, the converse does not hold constructively

Fortunately, we can give a direct reduction from the complement of PCP:

Theorem

 $\neg PCPS$ iff $\dot{\neg}\varphi_S$ is satisfiable, hence co-PCP reduces to satisfiability.

Proof.

If $\neg \mathsf{PCP}\, S$, then $\mathcal{B} \vDash \dot{\neg} \varphi_S$ since $\mathcal{B} \vDash \varphi_S$ would yield PCP S as before. Now suppose there are \mathcal{I} and ρ with $\mathcal{I} \vdash_{\rho} \dot{\neg} \varphi_S$. Then assuming PCP S yields the contradiction that φ_S is valid.

Interlude: Completeness Theorems for FOL

Completeness of deduction systems for FOL relies on Markov's principle:

$$\mathsf{MP} := \forall f : \mathbb{N} \to \mathbb{B}. \, \neg \neg (\exists n. \, f \, n = \mathsf{tt}) \to \exists n. \, f \, n = \mathsf{tt}$$

MP is independent but admissible in Coq's type theory*

Theorem (cf. Yannick Forster, K., and Dominik Wehr at LFCS'20.)

- lackloss $\mathcal{T} \vDash \varphi$ implies $\neg\neg(\mathcal{T} \vdash_{c} \varphi)$ for all \mathcal{T} : Form $\rightarrow \mathbb{P}$ and φ : Form
- lacksquare If ${\mathcal T}$ is enumerable, then MP is equivalent to the stability of ${\mathcal T} \vdash_{\mathsf c} \varphi$
- \Rightarrow Completeness for enumerable $\mathcal T$ is equivalent to MP and admissible

Possible strategies:

- a) Verify a weak reduction from PCP integrating the double negation
- b) Obtain a standard reduction by proving $A \vdash_c \varphi_S$ by hand (done so far)

^{*}Coquand/Mannaa '17, Pédrot/Tabareau '18

Undecidability of Minimal Provability

We define a minimal natural deduction system inductively:

$$\frac{\varphi \in A}{A \vdash \varphi} A \qquad \frac{\varphi :: A \vdash \psi}{A \vdash \varphi \to \psi} II \qquad \frac{A \vdash \varphi \to \psi}{A \vdash \psi} IE$$

$$\frac{A \vdash \varphi_{a}^{\times} \quad a \notin \mathcal{P}(\varphi) \cup \mathcal{P}(A)}{A \vdash \forall x. \varphi} AI \qquad \frac{A \vdash \dot{\forall} x. \varphi \quad \mathcal{V}(\tau) = \emptyset}{A \vdash \varphi_{\tau}^{\times}} AE$$

A formula φ is provable if $\vdash \varphi$.

Fact (Soundness)

 $A \vdash \varphi$ implies $A \vDash \varphi$, so provable formulas are valid.

Theorem

- PCP S iff φ_S is provable. (proving $\vdash \varphi_S$ by hand)
- Provability is enumerable. (by giving a list enumerator)

Undecidability of Classical Provability

We extend the deduction system by classical double negation elimination:

$$\frac{A \vdash_{c} \dot{\neg} \dot{\neg} \varphi}{A \vdash_{c} \varphi} DN$$

Unfortunately, this rule is not sound constructively!

As a remedy, we define a Gödel-Gentzen-Friedman translation φ^Q of formulas φ such that $A \vdash_c \varphi$ implies $A^Q \vdash_\varphi Q$.

Theorem

PCP S iff φ_S is classically provable, hence PCP reduces to classical ND.

Proof.

If PCP S then $\vdash \varphi_S$ by the previous theorem and hence $\vdash_c \varphi_S$. Conversely, let $\vdash_c \varphi_S$ and hence $\vdash \varphi_S^Q$. Then by soundness $\mathcal{B} \vDash \varphi_S^Q$ which still implies $\mathcal{B} \vDash Q$ and PCP S as before.

Example 2: Trakhtenbrot's Theorem*

^{*}K. and Dominique Larchey-Wendling at IJCAR'20.

General idea

Given a FOL formula φ , is φ finitely satisfiable?

Textbook proofs by dual reduction from the halting problem:*

- Encode Turing machine M as formula φ_M over custom signature
- lacktriangle Verify that the models of φ_M correspond to the runs of M
- Conclude that M halts if and only if φ_M has a finite model

Our mechanisation:

- Illustrates that one can still use PCP for a simpler reduction
- Signature minimisations are constructive for finite models

^{*}e.g. Libkin (2010); Börger et al. (1997)

First-Order Satisfiability over Signatures

Given a signature $\Sigma = (\mathcal{F}_{\Sigma}; \mathcal{P}_{\Sigma})$, we represent terms and formulas by:

$$\begin{array}{ll} t\,:\, \mathsf{Term}_{\Sigma}\,::=\,x\mid f\,\vec{t} & \qquad \qquad (x:\mathbb{N},\; f:\mathcal{F}_{\Sigma},\; \vec{t}:\mathsf{Term}_{\Sigma}^{|f|})\\ \varphi,\psi\,:\, \mathsf{Form}_{\Sigma}\,::=\, \dot{\bot}\mid P\,\vec{t}\mid \varphi\,\dot{\square}\,\psi\mid \dot{\nabla}\varphi & \qquad (P:\mathcal{P}_{\Sigma},\; \vec{t}:\mathsf{Term}_{\Sigma}^{|F|}) \end{array}$$

A model $\mathcal M$ over a domain D is a pair of interpretation functions:

$$-^{\mathcal{M}}: \forall f: \mathcal{F}_{\Sigma}. D^{|f|} \to D$$
 $-^{\mathcal{M}}: \forall P: \mathcal{P}_{\Sigma}. D^{|P|} \to \mathbb{P}$

For assignments $\rho: \mathbb{N} \to D$ define evaluation $\hat{\rho} t$ and satisfaction $\mathcal{M} \vDash_{\rho} \varphi$:

$$\hat{\rho}x := \rho x \qquad \qquad \hat{\rho}(f\vec{t}) := f^{\mathcal{M}}(\hat{\rho}\vec{t})
\mathcal{M} \vDash_{\rho} \dot{\bot} := \bot \qquad \qquad \mathcal{M} \vDash_{\rho} \varphi \, \Box \mathcal{M} \vDash_{\rho} \psi
\mathcal{M} \vDash_{\rho} P\vec{t} := P^{\mathcal{M}}(\hat{\rho}\vec{t}) \qquad \qquad \mathcal{M} \vDash_{\rho} \dot{\nabla}\varphi := \nabla a : D. \mathcal{M} \vDash_{a \cdot \rho} \varphi$$

 $\mathsf{SAT}(\Sigma)\,\varphi := \mathsf{there} \;\mathsf{are}\; \mathcal{M} \;\mathsf{and}\; \rho \;\mathsf{such}\; \mathsf{that}\; \mathcal{M} \vDash_{\rho} \varphi$

Finiteness in Constructive Type Theory

Definition

A type X is finite if there exists a list I_X with $x \in I_X$ for all x : X.

This seems to be a good compromise:

- Easy to establish and work with
- Does not enforce discreteness
- Enough to get expected properties:
 - Every strict order on a finite type is well-founded
 - lacktriangle Every finite decidable equivalence relation admits a quotient on \mathbb{F}_n

 $\mathsf{FSAT}(\Sigma)\,\varphi \text{ if additionally } D \text{ is finite and all } P^{\mathcal{M}} \text{ are decidable}$ $\mathsf{FSATEQ}(\Sigma;\equiv)\,\varphi \text{ if } x\equiv^{\mathcal{M}} y \leftrightarrow x = y \text{ for all } x,y:D \text{ (hence discrete)}$

Encoding the Post Correspondence Problem

We use the signature $\Sigma_{BPCP} := (\{\star^0, e^0, f_{tt}^1, f_{ff}^1\}; \{P^2, \prec^2, \equiv^2\})$:

- Chains like $f_{\rm ff}(f_{\rm tt}(e))$ represent strings while \star signals overflow
- P concerns only defined values and \prec is a strict ordering:

$$\varphi_{P} := \forall xy. P \times y \rightarrow x \not\equiv \star \dot{\wedge} y \not\equiv \star \varphi_{\prec} := (\forall x. x \not\prec x) \dot{\wedge} (\forall xyz. x \prec y \rightarrow y \prec z \rightarrow x \prec z)$$

■ Sanity checks on *f* regarding overflow, disjointness, and injectivity:

$$\varphi_{f} := \begin{pmatrix} f_{\mathsf{tt}} \star \equiv \star \dot{\wedge} & f_{\mathsf{ff}} \star \equiv \star \\ \dot{\forall} x. & f_{\mathsf{tt}} x \not\equiv e \\ \dot{\forall} x. & f_{\mathsf{ff}} x \not\equiv e \end{pmatrix} \dot{\wedge} \begin{pmatrix} \dot{\forall} xy. & f_{\mathsf{tt}} x \not\equiv \star \dot{\rightarrow} & f_{\mathsf{tt}} x \equiv f_{\mathsf{ft}} y \dot{\rightarrow} x \equiv y \\ \dot{\forall} xy. & f_{\mathsf{ff}} x \not\equiv \star \dot{\rightarrow} & f_{\mathsf{ff}} x \equiv f_{\mathsf{ff}} y \dot{\rightarrow} x \equiv y \\ \dot{\forall} xy. & f_{\mathsf{tt}} x \equiv f_{\mathsf{ff}} y \dot{\rightarrow} & f_{\mathsf{tt}} x \equiv \star \dot{\wedge} & f_{\mathsf{ff}} y \equiv \star \end{pmatrix}$$

Trakhtenbrot's Theorem

Given an instance R of PCP, we construct a formula φ_R by:

$$\varphi_{R} := \varphi_{P} \dot{\wedge} \varphi_{\prec} \dot{\wedge} \varphi_{f} \dot{\wedge} \varphi_{\triangleright} \dot{\wedge} \dot{\exists} x. P x x$$

Crucially, we enforce that P satisfies the inversion principle of $R \triangleright (s, t)$:

$$\varphi_{\triangleright} := \dot{\forall} xy. \ P \times y \ \dot{\rightarrow} \ \bigvee_{(s,t) \in R} \dot{\lor} \left\{ \begin{matrix} x \equiv \overline{s} \ \dot{\land} \ y \equiv \overline{t} \\ \dot{\exists} uv. \ P \ u \ v \ \dot{\land} \ x \equiv \overline{s} u \ \dot{\land} \ y \equiv \overline{t} v \ \dot{\land} \ u/v \prec x/y \end{matrix} \right.$$

Theorem

 $PCP R iff FSATEQ(\Sigma_{BPCP}; \equiv) \varphi_R, hence PCP \preccurlyeq FSATEQ(\Sigma_{BPCP}; \equiv).$

Proof.

If R has a solution of length n, then φ_R is satisfied by the model of strings of length bounded by n. Conversely, if $\mathcal{M} \vDash_{\rho} \varphi_R$ we can extract a solution of R from φ_{\triangleright} by well-founded induction on $\prec^{\mathcal{M}}$ (which is applicable since \mathcal{M} is finite). \square

Signature Transformations

Given a finite and discrete signature Σ with arities bounded by n, we have:

$$\mathsf{FSATEQ}(\Sigma; \equiv) \preccurlyeq \mathsf{FSAT}(\Sigma) \preccurlyeq \mathsf{FSAT}(\mathbb{0}; P^{n+2}) \preccurlyeq \mathsf{FSAT}(\mathbb{0}; \in^2)$$

First reduction: axiomatise that \equiv is a congruence for the symbols in Σ

Second reduction:

- Encode k-ary functions as (k + 1)-ary relations
- Align the relation arities to be constantly n + 1
- Merge relations into a single (n + 2)-ary relation indexed by constants
- Interpret constants with fresh variables

Caveat: intermediate reductions may rely on discrete models...

Discrete Models

 $\mathsf{FSAT}'(\Sigma)\, \varphi$ if $\mathsf{FSAT}(\Sigma)\, \varphi$ on a discrete model

Can every finite model \mathcal{M} be transformed to a discrete finite model \mathcal{M}' ?

Idea: first-order indistinguishability $x \doteq y := \forall \varphi \rho. \ \mathcal{M} \vDash_{\mathsf{x} \cdot \rho} \varphi \leftrightarrow \mathcal{M} \vDash_{\mathsf{y} \cdot \rho} \varphi$

Lemma

The relation x = y is a decidable congruence for the symbols in Σ .

Fact

 $\mathsf{FSAT}'(\Sigma)\,\varphi\,\,\mathit{iff}\,\,\,\mathsf{FSAT}(\Sigma)\,\varphi,\,\,\mathit{hence}\,\,\mathit{in}\,\,\mathit{particular}\,\,\mathsf{FSAT}'(\Sigma)\,\varphi\,\preccurlyeq\,\,\mathsf{FSAT}(\Sigma)\,\varphi.$

Proof.

If $\mathcal{M} \vDash_{\rho} \varphi$ pick \mathcal{M}' to be the quotient of \mathcal{M} under $x \doteq y$.

Compressing Relations: $FSAT(0; P^n) \leq FSAT(0; \in^2)$

Intuition: encode $P x_1 \dots x_n$ as $(x_1, \dots, x_n) \in p$ for a set p representing P

So let's play set theory! For a set d representing the domain we define φ'_{\in} :

$$(P x_1 \dots x_n)'_{\in} := \text{``}(x_1, \dots, x_n) \in p\text{''} \qquad (\dot{\forall} z. \varphi)'_{\in} := \dot{\forall} z. z \in d \stackrel{.}{\rightarrow} (\varphi)'_{\in}$$

$$(\varphi \stackrel{.}{\Box} \psi)'_{\in} := (\varphi)'_{\in} \stackrel{.}{\Box} (\psi)'_{\in}$$

$$(\dot{\exists} z. \varphi)'_{\in} := \dot{\exists} z. z \in d \stackrel{.}{\wedge} (\varphi)'_{\in}$$

Then φ_{\in} is φ'_{\in} plus asserting \in to be extensional and d to be non-empty.

Fact

$$\mathsf{FSAT}(\mathbb{0};P^n)\,\varphi\ \textit{iff}\ \mathsf{FSAT}(\mathbb{0};\in^2)\,\varphi_\in,\ \textit{hence}\ \mathsf{FSAT}(\mathbb{0};P^n)\preccurlyeq\mathsf{FSAT}(\mathbb{0};\in^2).$$

Proof.

The hard direction is to construct a model of φ_{\in} given a model \mathcal{M} of φ . We employ a segment of the model of hereditarily finite sets by Smolka and Stark (2016) large enough to accommodate \mathcal{M} .

Full Signature Classification

Composing all signature transformations verified we obtain:

Theorem

If Σ contains either an at least binary relation or a unary relation together with an at least binary function, then PCP reduces to FSAT(Σ).

On the other hand, FSAT for monadic signatures remains decidable:

Theorem

If Σ is discrete and has all arities bounded by 1 or if all relation symbols have arity 0, then FSAT(Σ) is decidable.

In any case, since one can enumerate all finite models up to extensionality:

Fact

If Σ is discrete and enumerable, then $\mathsf{FSAT}(\Sigma)$ is enumerable.

Example 3: First-Order Axiom Systems*

^{*}K. and Marc Hermes at ITP'21.

General Idea

Is a formula φ entailed by an axiomatisation A?

Strategy if *A* is strong enough to capture computation:

- Encode Turing machine M as formula φ_M
- Verify that M halts iff $A \models \varphi_M$
- Verify that M halts iff $A \vdash \varphi_M$ (\rightarrow direction by hand)
- Instead of TM use problems suitable to encode in A

As hard as consistency and incompleteness:

- Reducing a non-trivial problem P to $A \vdash \varphi$ shows A consistent
- Undecidability implies incompleteness for enumerable axiomatisations

Connections to Consistency and Incompleteness

Fact (Consistency)

If $p \leq A^{\vdash}$ and there is x with $\neg p x$ then $A \not\vdash \bot$.

Proof.

Let f witness $p \leq A^{\vdash}$. Then $A \not\vdash f x$ by $\neg p x$ and thus $A \not\vdash \bot$.

Fact (Synthetic Incompleteness)

If A is complete $(\forall \varphi. A \vdash \varphi \lor A \vdash \neg \varphi)$ and consistent, then A^{\vdash} is decidable.

Proof.

By application of Post's theorem. The premises are enumerability of A^{\vdash} (immediate), enumerability of its complement (as $A \not\vdash \varphi$ iff $A \vdash \neg \varphi$), and logical decidability of A^{\vdash} (as $A \vdash \varphi \lor A \vdash \neg \varphi$ implies $A \vdash \varphi \lor A \not\vdash \varphi$).

Sketch for Peano Arithmetic

Use axiomatisation PA over standard signature $(0, S, +, \cdot; \equiv)$.

Diophantine constraints (cf. Larchey-Wendling and Forster (2019)):

- Instances are lists L of constraints $x_i = 1 \mid x_i + x_j = x_k \mid x_i \cdot x_j = x_k$
- L is solvable if there is an evaluation $\eta: \mathbb{N} \to \mathbb{N}$ solving all constraints

Theorem

$$L = [c_1, \dots, c_k]$$
 with maximal index x_n is solvable iff $PA \models \exists^n c_1 \land \dots \land c_k$.

Proof.

If L has solution η instantiate the existential quantifiers with numerals $\overline{\eta_1},\ldots,\overline{\eta_n}$. Then the axioms of PA entail the constraints.

If PA $\vDash \exists^n c_1 \land \cdots \land c_k$ use the standard model $\mathbb N$ to extract solution η .

Fact

 $L = [c_1, \ldots, c_k]$ with maximal index x_n is solvable iff $PA \vdash \exists^n c_1 \land \cdots \land c_k$.

Interlude: Models of ZF

Sets-as-trees interpretation (Aczel (1978)):

- Type $\mathcal T$ of well-founded trees with constructor $\tau: \forall X. \, (X \to \mathcal T) \to \mathcal T$
- Equality of trees s, t given by isomorphism $s \approx t$
- Membership defined by $s \in \tau X f := \exists x. s \approx f x$
- Set operations implemented by tree operations:

```
\begin{array}{l} \bullet \ \emptyset := \tau \perp \operatorname{elim}_{\perp} \\ \bullet \ \{s,t\} := \tau \, \mathbb{B} \, \big( \lambda b. \, \text{if} \, \, b \, \, \text{then} \, \, s \, \, \text{else} \, \, t \big) \\ \bullet \ \omega := \tau \, \mathbb{N} \, \big( \lambda n. \, \overline{n} \big) \, \, \text{where} \, \, \overline{0} := \emptyset \, \, \text{and} \, \, \overline{S} \, \underline{n} := \overline{n} \cup \{\overline{n}\} \\ \bullet \ \dots \end{array}
```

Axioms needed in Coq:

- EM to really interpret ZF instead of IZF
- Replacement needs a type-theoretical choice axiom (Werner (1997))
- lacksquare Strong quotient axiom for $(\mathcal{T}, pprox)$ suffices (Kirst and Smolka (2019))
- lacktriangle This yields a well-behaved model \mathcal{S} : quotiented, standard numbers

Sketch for ZF Set Theory

Use axiomatisation ZF over explicit signature $(\emptyset, \{_, _\}, \bigcup, \mathcal{P}, \omega; \equiv, \in)$.

Reduction from PCP:

- Boolean encoding: $\overline{\mathsf{tt}} = \{\emptyset\}$ and $\overline{\mathsf{ff}} = \emptyset$
- String encoding: $\overline{\operatorname{tt}}\,\overline{\operatorname{ff}}\,\overline{\operatorname{tt}}=(\overline{\operatorname{tt}},(\overline{\operatorname{ff}},(\overline{\operatorname{tt}},(\overline{\operatorname{ff}},\emptyset))))$
- Stack encoding: $\overline{S} = \{(\overline{s_1}, \overline{t_1}), \dots, (\overline{s_k}, \overline{t_k})\}$
- Combination encoding: $S ++ B := \bigcup_{s/t \in S} \{(\overline{s}x, \overline{t}y) \mid (x, y) \in B\}$
- $f \triangleright n := (\emptyset, \overline{S}) \in f \land \forall (k, B) \in f. \ k \in n \rightarrow (k+1, S++B) \in f$

$$\varphi_{S} := \exists f, n, B, x. n \in \omega \land f \triangleright n \land (n, B) \in f \land (x, x) \in B$$

Theorem

PCP S iff $ZF \models \varphi_S$ and PCP S iff $ZF \vdash \varphi_S$.

Proof.

Direction \rightarrow by proofs in ZF and \leftarrow relies on standard model S.

Conclusion

Ongoing and Future Work

- Undecidability and incompleteness of finitary set theories
- Minimalistic undecidability proof for the binary signature
- Undecidability and incompleteness of second-order logic
- Constructive analysis of Tennenbaum's theorem
- Engineering: tool support, connect Coq developments

Take-Home Messages

- Synthetic computability: elegant formalism, feasible to mechanise
- Metamathematics: rewarding to revisit in constructive type theory
- Coq mechanisation: implements constructive proofs as algorithms
- If you work on undecidability proofs in Coq:
 Our library could help you and is open for contributions

Thank You!

Bibliography I

- Aczel, P. (1978). The type theoretic interpretation of constructive set theory. In *Studies in Logic and the Foundations of Mathematics*, volume 96, pages 55–66. Elsevier.
- Bauer, A. (2006). First steps in synthetic computability theory. Electronic Notes in Theoretical Computer Science, 155:5 – 31. Proceedings of the 21st Annual Conference on Mathematical Foundations of Programming Semantics (MFPS XXI).
- Börger, E., Grädel, E., and Gurevich, Y. (1997). *The Classical Decision Problem*. Perspectives in Mathematical Logic. Springer-Verlag Berlin Heidelberg.
- Coquand, T. and Huet, G. (1986). The calculus of constructions. PhD thesis, INRIA.
- Forster, Y., Kirst, D., and Smolka, G. (2019). On synthetic undecidability in coq, with an application to the entscheidungsproblem. In *Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs*.
- Forster, Y., Kirst, D., and Wehr, D. (2020a). Completeness Theorems for First-Order Logic Analysed in Constructive Type Theory. In *Symposium on Logical Foundations Of Computer Science*, 2020, Deerfield Beach, Florida, U.S.A.
- Forster, Y., Larchey-Wendling, D., Dudenhefner, A., Heiter, E., Kirst, D., Kunze, F., Smolka, G., Spies, S., Wehr, D., and Wuttke, M. (2020b). A Coq Library of Undecidable Problems. In *CoqPL 2020*, New Orleans, LA, United States.

Bibliography II

- Gödel, K. (1931). Über formal unentscheidbare sätze der principia mathematica und verwandter systeme i. *Monatshefte für mathematik und physik*, 38(1):173–198.
- Gödel, K. (1930). Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte für Mathematik und Physik, 37:349–360.
- Kirst, D. and Hermes, M. (2021). Synthetic undecidability and incompleteness of first-order axiom systems in coq. In 12th International Conference on Interactive Theorem Proving (ITP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.
- Kirst, D. and Larchey-Wendling, D. (2020). Trakhtenbrot's theorem in coq, a constructive approach to finite model theory. arXiv preprint arXiv:2004.07390.
- Kirst, D. and Smolka, G. (2019). Categoricity results and large model constructions for second-order zf in dependent type theory. *Journal of Automated Reasoning*, 63(2):415–438.
- Larchey-Wendling, D. and Forster, Y. (2019). Hilbert's Tenth Problem in Coq. In 4th International Conference on Formal Structures for Computation and Deduction, volume 131 of LIPIcs, pages 27:1–27:20.
- Libkin, L. (2010). *Elements of Finite Model Theory*. Springer Publishing Company, Incorporated, 1st edition.
- Manna, Z. (2003). Mathematical theory of computation. Dover Publications, Inc.

Bibliography III

- Paulin-Mohring, C. (1993). Inductive definitions in the system coq rules and properties. In *International Conference on Typed Lambda Calculi and Applications*, pages 328–345. Springer.
- Richman, F. (1983). Church's thesis without tears. *The Journal of symbolic logic*, 48(3):797–803.
- Smolka, G. and Stark, K. (2016). Hereditarily Finite Sets in Constructive Type Theory. In *Interactive Theorem Proving 7th International Conference, ITP 2016, Nancy, France, August 22-27, 2016*, volume 9807 of *LNCS*, pages 374–390. Springer.
- Tarski, A. (1953). I: A general method in proofs of undecidability. In Tarski, A., editor, *Undecidable Theories*, volume 13 of *Studies in Logic and the Foundations of Mathematics*, pages 1–34. Elsevier.
- The Coq Development Team (2021). The coq proof assistant.
- Werner, B. (1997). Sets in types, types in sets. In *International Symposium on Theoretical Aspects of Computer Software*, pages 530–546. Springer.