
Formalising Metamathematics in
Constructive Type Theory

Synthetic Undecidability and Incompleteness

Dominik Kirst

Proof and Computation
September 14th, 2021

computer science

saarland
university

Dominik Kirst Formalising Metamathematics September 14th, 2021 1

http://www.cs.uni-saarland.de/
http://www.cs.uni-saarland.de/

What will this talk be about?

Metamathematics (of first-order logic):
Mostly negative results: undecidability and incompleteness∗

Sketch positive results: completeness and (relative) consistency†

Constructive type theory:
Basic concepts of the calculus of inductive constructions (CIC)‡

Implementation in the Coq proof assistant§

Synthetic computability¶

∗Tarski (1953); Gödel (1931)
†Gödel (1930); Werner (1997)
‡Coquand and Huet (1986); Paulin-Mohring (1993)
§The Coq Development Team (2021)
¶Richman (1983); Bauer (2006)

Dominik Kirst Formalising Metamathematics September 14th, 2021 2

Outline

Framework: Synthetic Undecidability

Example 1: The Entscheidungsproblem

Example 2: Trakhtenbrot’s Theorem

Example 3: First-Order Axiom Systems

Conclusion

Dominik Kirst Formalising Metamathematics September 14th, 2021 3

Framework:
Synthetic Undecidability∗

∗Yannick Forster, K., and Gert Smolka at CPP’19.
Dominik Kirst Formalising Metamathematics September 14th, 2021 4

How to mechanise decidability?

Conventional approach:
Pick a concrete model of computation
(Turing machines, µ-recursive functions, untyped λ-calculus, etc.)
Invent a decision procedure for the given problem
Explicitly code the algorithm in the chosen model!

Synthetic approach (Richman (1983); Bauer (2006)):
Work in a constructive foundation, e.g. constructive type theory
Define a decision procedure e.g. as a Boolean function
Definable functions are computable, so that’s it!

(Similar for other notions like enumerability and reducibility)

Dominik Kirst Formalising Metamathematics September 14th, 2021 5

How to mechanise undecidability?

Problem of the synthetic approach:
Constructive type theories like CIC are consistent with classical
assumptions, rendering every problem decidable
Proving a given problem undecidable is not outright possible

Possible solutions:
Resort to a concrete model of computation
Verify a synthetic reduction from an undecidable problem

I Computability axioms could be used to obtain expected results

(Again similar for other negative notions of computability theory)

Dominik Kirst Formalising Metamathematics September 14th, 2021 6

Coq’s Type Theory

Main features of Coq’s underlying CIC:

Standard type formers: X → Y , X × Y , X + Y , ∀x .F x , Σx .F x

Inductive types: B, N, lists L(X), options O(X), vectors X n, ...

Propositional universe P with logical connectives: →, ∧, ∨, ∀, ∃

P is impredicative and separate from computational types

All definable functions N→ N are computable!

Dominik Kirst Formalising Metamathematics September 14th, 2021 7

Decidability and Enumerability

A problem interpreted as a predicate p : X → P on a type X is
decidable if there is a function f : X → B with

∀x . p x ↔ f x = tt,

enumerable if there is a function f : N→ O(X) with

∀x . p x ↔ ∃n. f n = pxq.

Fact
Let p : X → P be a predicate, then p is

decidable iff ∀x . p x + ¬p x is inhabited and
enumerable iff there is L : N→ L(X) s.t. ∀x . p x ↔ ∃n. x ∈ L n.

Dominik Kirst Formalising Metamathematics September 14th, 2021 8

Data Types

Computability theory is usually developed on computational domains.

A type X is called
enumerable if λx .> is enumerable,
discrete if λxy . x = y is decidable, and
data type if it is both enumerable and discrete.

Fact
Decidable predicates p on data types X are enumerable and co-enumerable.

Proof.
Let fX : N→ O(X) enumerate X and fp : X → B decide p. Then

f n := match fX n with pxq⇒ if fp x then pxq else ∅ | ∅ ⇒ ∅

defines an enumerator for p.

Dominik Kirst Formalising Metamathematics September 14th, 2021 9

Post’s Theorem

Theorem
Let p on a data type X be enumerable and co-enumerable. If p is also
logically decidable, i.e. ∀x . p x ∨ ¬p x , then it is decidable.

Proof.

Let f enumerate p and g enumerate its complement p.
∀x .∃n. f n = pxq ∨ g n = pxq by logical decidability.
For given x , corresponding n can be computed by linear search.
Disjunction f n = pxq ∨ g n = pxq lacks computational information.
Use discreteness to computably compare pxq with f n and g n.
Obtain decision whether p x or ¬p x .

Dominik Kirst Formalising Metamathematics September 14th, 2021 10

Many-One Reductions

Given predicates p : X → P and q : Y → P we call a function f : X → Y a
(many-one) reduction from p to q if

∀x . p x ↔ q (f x).

We write p 4 q if a reduction from p to q exists.

Theorem (Reduction)

Let p and q be predicates on data types with p 4 q.
If q is decidable/enumerable/co-enumerable, then so is p.
If p is not co-enumerable, then q is not co-enumerable.

Proof.
If f witnesses p 4 q and g decides q, then g ◦ f decides p.

Dominik Kirst Formalising Metamathematics September 14th, 2021 11

The Post Correspondence Problem

Intuition: given a stack S of cards s/t, find a derivable match.
This (undecidable) problem can be expressed by an inductive predicate:

s/t ∈ S

S . s/t

S . u/v s/t ∈ S

S . su/tv

S . s/s

PCP S

Fact
The type S of stacks is a data type and PCP is enumerable.

Proof.
The former follows from closure properties and for the latter

L 0 := []

L (S n) := L n++ [(S , (s, t)) | S ∈ LS n, (s, t) ∈ S]

++ [(S , (su, tv)) | (S , (u, v)) ∈ L n, (s, t) ∈ S]

defines a list enumerator for λSst.S . s/t.

Dominik Kirst Formalising Metamathematics September 14th, 2021 12

Coq Library of Undecidability Proofs∗

Merge of a few initial Coq developments:
I Computablity theory using a cbv. lambda calculus
I Synthetic computability
I Initial undecidability proofs

Extended with further undecidability reductions over past 3 years

Unified framework to ease external contribution

11+ contributors and more than 100k lines of code

14+ related publications (ITP, CPP, IJCAR, FSCD, etc.)

Currently roughly 13 (groups of) undecidable problems

∗https://github.com/uds-psl/coq-library-undecidability
Dominik Kirst Formalising Metamathematics September 14th, 2021 13

https://github.com/uds-psl/coq-library-undecidability

Library Overview (Forster et al. (2020b))
λ

TM

SR

PCP

stack/register machines

FRACTRAN

H10

µ-rec

FOL

CFG

System F

HOU

ILL

Classification in seed problems and target problems
This talk: mostly the PCP → FOL edge, a bit of H10 → FOL

Dominik Kirst Formalising Metamathematics September 14th, 2021 14

Example 1:
The Entscheidungsproblem∗

∗Yannick Forster, K., and Gert Smolka at CPP’19.
Dominik Kirst Formalising Metamathematics September 14th, 2021 15

General Idea

Given a FOL formula ϕ, is ϕ valid in all models?

Conventional outline following Turing:
Encode Turing machine M as formula ϕM over custom signature
Verify that M halts if and only if ϕM holds in all models
(Argue why the used signature could have been minimised)

Our outline:
Follow the simpler proof given in Manna (2003) using PCP
Also don’t bother with signature minimisation yet...

Dominik Kirst Formalising Metamathematics September 14th, 2021 16

Syntax and Tarski Semantics

Terms and formulas are defined for a fixed signature:

τ : Term := x | a | e | ftt τ | fff τ x , a : N
ϕ,ψ : Form := ⊥̇ | Q | P τ1 τ2 | ϕ→̇ψ | ∀̇x . ϕ

Formulas are interpreted in models I = (D, η, eI , f Itt , f
I
ff ,Q

I ,PI)
given a variable environment ρ : N→ D:

I �ρ ⊥̇ := ⊥
I �ρ Q := QI

I �ρ P τ1 τ2 := PI (ρ̂ τ1) (ρ̂ τ2)

I �ρ ϕ→̇ψ := I �ρ ϕ→ I �ρ ψ
I �ρ ∀̇x . ϕ := ∀d : D. I �ρ[x :=d] ϕ

A formula ϕ is valid if I �ρ ϕ for all I and ρ.

Dominik Kirst Formalising Metamathematics September 14th, 2021 17

A Standard Model

Strings can be encoded as terms, e.g. tt ff ff tt = ftt (fff (fff (ftt (e)))).

The standard model B over the type L(B) of Boolean strings captures
exactly the cards derivable from a fixed stack S :

eB := [] QB := PCPS

f Bb s := b :: s PB s t := S . s/t.

Lemma
Let ρ : N→ L(B) be an environment for the standard model B.
Then ρ̂ s = s and B �ρ P τ1 τ2 ↔ S . ρ̂ τ1/ρ̂ τ2.

Dominik Kirst Formalising Metamathematics September 14th, 2021 18

Undecidability of Validity
We express the constructors of S . s/t and PCP as formulas:

ϕ1 := [P s t | s/t ∈ S]

ϕ2 := [∀̇xy .P x y→̇P (sx) (ty) | s/t ∈ S]

ϕ3 := ∀̇x .P x x→̇Q

ϕS := ϕ1→̇ϕ2→̇ϕ3→̇Q

Theorem
PCPS iff ϕS is valid, hence PCP reduces to validity.

Proof.
Let ϕS be valid, so in particular B � ϕS . Since B satisfies all of ϕ1, ϕ2,
and ϕ3 it follows that B � Q and thus PCP S .
Now suppose that S . s/s for some s and that some model I satisfies all of
ϕ1, ϕ2, and ϕ3. Then I � P s s by ϕ1 and ϕ2, hence I � Q by ϕ3, and
thus I � ϕS .

Dominik Kirst Formalising Metamathematics September 14th, 2021 19

Undecidability of Satisfiability

Disclaimer: validity does not directly reduce to (co-)satisfiability!
If ϕ is valid, then certainly ¬̇ϕ is unsatisfiable
However, the converse does not hold constructively

Fortunately, we can give a direct reduction from the complement of PCP:

Theorem
¬PCPS iff ¬̇ϕS is satisfiable, hence co-PCP reduces to satisfiability.

Proof.
If ¬PCP S , then B � ¬̇ϕS since B � ϕS would yield PCPS as before.
Now suppose there are I and ρ with I `ρ ¬̇ϕS . Then assuming PCPS
yields the contradiction that ϕS is valid.

Dominik Kirst Formalising Metamathematics September 14th, 2021 20

Interlude: Completeness Theorems for FOL

Completeness of deduction systems for FOL relies on Markov’s principle:

MP := ∀f : N→ B.¬¬(∃n. f n = tt)→ ∃n. f n = tt

MP is independent but admissible in Coq’s type theory∗

Theorem (cf. Yannick Forster, K., and Dominik Wehr at LFCS’20.)

T � ϕ implies ¬¬(T `c ϕ) for all T : Form→ P and ϕ : Form
If T is enumerable, then MP is equivalent to the stability of T `c ϕ

⇒ Completeness for enumerable T is equivalent to MP and admissible

Possible strategies:
a) Verify a weak reduction from PCP integrating the double negation
b) Obtain a standard reduction by proving A `c ϕS by hand (done so far)

∗Coquand/Mannaa ’17, Pédrot/Tabareau ’18
Dominik Kirst Formalising Metamathematics September 14th, 2021 21

Undecidability of Minimal Provability

We define a minimal natural deduction system inductively:

ϕ ∈ A

A ` ϕ A
ϕ :: A ` ψ
A ` ϕ→̇ψ II

A ` ϕ→̇ψ A ` ϕ
A ` ψ IE

A ` ϕx
a a 6∈ P(ϕ) ∪ P(A)

A ` ∀̇x . ϕ
AI

A ` ∀̇x . ϕ V(τ) = ∅
A ` ϕx

τ
AE

A formula ϕ is provable if ` ϕ.

Fact (Soundness)

A ` ϕ implies A � ϕ, so provable formulas are valid.

Theorem

PCP S iff ϕS is provable. (proving ` ϕS by hand)
Provability is enumerable. (by giving a list enumerator)

Dominik Kirst Formalising Metamathematics September 14th, 2021 22

Undecidability of Classical Provability

We extend the deduction system by classical double negation elimination:

A `c ¬̇¬̇ϕ
A `c ϕ

DN

Unfortunately, this rule is not sound constructively!

As a remedy, we define a Gödel-Gentzen-Friedman translation ϕQ of
formulas ϕ such that A `c ϕ implies AQ ` ϕQ .

Theorem
PCPS iff ϕS is classically provable, hence PCP reduces to classical ND.

Proof.
If PCP S then ` ϕS by the previous theorem and hence `c ϕS . Conversely,
let `c ϕS and hence ` ϕQ

S . Then by soundness B � ϕQ
S which still implies

B � Q and PCP S as before.

Dominik Kirst Formalising Metamathematics September 14th, 2021 23

Example 2:
Trakhtenbrot’s Theorem∗

∗K. and Dominique Larchey-Wendling at IJCAR’20.
Dominik Kirst Formalising Metamathematics September 14th, 2021 24

General idea

Given a FOL formula ϕ, is ϕ finitely satisfiable?

Textbook proofs by dual reduction from the halting problem:∗

Encode Turing machine M as formula ϕM over custom signature
Verify that the models of ϕM correspond to the runs of M
Conclude that M halts if and only if ϕM has a finite model

Our mechanisation:
Illustrates that one can still use PCP for a simpler reduction
Signature minimisations are constructive for finite models

∗e.g. Libkin (2010); Börger et al. (1997)
Dominik Kirst Formalising Metamathematics September 14th, 2021 25

First-Order Satisfiability over Signatures
Given a signature Σ = (FΣ;PΣ), we represent terms and formulas by:

t : TermΣ ::= x | f ~t (x : N, f : FΣ, ~t : Term
|f |
Σ)

ϕ,ψ : FormΣ ::= ⊥̇ | P ~t | ϕ �̇ψ | ∇̇ϕ (P : PΣ, ~t : Term
|P|
Σ)

A modelM over a domain D is a pair of interpretation functions:

−M : ∀f : FΣ.D
|f | → D −M : ∀P : PΣ.D

|P| → P

For assignments ρ : N→ D define evaluation ρ̂ t and satisfactionM �ρ ϕ:
ρ̂ x := ρx ρ̂ (f ~t) := fM (ρ̂ ~t)

M �ρ ⊥̇ := ⊥ M �ρ ϕ �̇ψ := M �ρ ϕ �M �ρ ψ

M �ρ P ~t := PM (ρ̂ ~t) M �ρ ∇̇ϕ := ∇a : D.M �a·ρ ϕ

SAT(Σ)ϕ := there areM and ρ such thatM �ρ ϕ

Dominik Kirst Formalising Metamathematics September 14th, 2021 26

Finiteness in Constructive Type Theory

Definition
A type X is finite if there exists a list lX with x ∈ lX for all x : X .

This seems to be a good compromise:
Easy to establish and work with
Does not enforce discreteness
Enough to get expected properties:

I Every strict order on a finite type is well-founded
I Every finite decidable equivalence relation admits a quotient on Fn

FSAT(Σ)ϕ if additionally D is finite and all PM are decidable

FSATEQ(Σ;≡)ϕ if x ≡M y ↔ x = y for all x , y : D (hence discrete)

Dominik Kirst Formalising Metamathematics September 14th, 2021 27

Encoding the Post Correspondence Problem

We use the signature ΣBPCP := ({?0, e0, f 1tt , f 1ff }; {P2,≺2,≡2}):

Chains like fff(ftt(e)) represent strings while ? signals overflow

P concerns only defined values and ≺ is a strict ordering:

ϕP := ∀̇xy .P x y →̇ x 6≡ ? ∧̇ y 6≡ ?
ϕ≺ := (∀̇x . x 6≺ x) ∧̇ (∀̇xyz . x ≺ y →̇ y ≺ z →̇ x ≺ z)

Sanity checks on f regarding overflow, disjointness, and injectivity:

ϕf :=

 ftt ? ≡ ? ∧̇ fff ? ≡ ?
∀̇x . ftt x 6≡ e

∀̇x . fff x 6≡ e

 ∧̇
 ∀̇xy . ftt x 6≡ ? →̇ ftt x ≡ ftt y →̇ x ≡ y

∀̇xy . fff x 6≡ ? →̇ fff x ≡ fff y →̇ x ≡ y

∀̇xy . ftt x ≡ fff y →̇ ftt x ≡ ? ∧̇ fff y ≡ ?



Dominik Kirst Formalising Metamathematics September 14th, 2021 28

Trakhtenbrot’s Theorem
Given an instance R of PCP, we construct a formula ϕR by:

ϕR := ϕP ∧̇ ϕ≺ ∧̇ ϕf ∧̇ ϕ. ∧̇ ∃̇x .P x x

Crucially, we enforce that P satisfies the inversion principle of R . (s, t):

ϕ. := ∀̇xy .P x y →̇
.∨

(s,t)∈R

∨̇
{
x ≡ s ∧̇ y ≡ t

∃̇uv .P u v ∧̇ x ≡ su ∧̇ y ≡ tv ∧̇ u/v ≺ x/y

Theorem
PCPR iff FSATEQ(ΣBPCP;≡)ϕR , hence PCP 4 FSATEQ(ΣBPCP;≡).

Proof.
If R has a solution of length n, then ϕR is satisfied by the model of strings of
length bounded by n. Conversely, ifM �ρ ϕR we can extract a solution of R from
ϕ. by well-founded induction on ≺M (which is applicable sinceM is finite).

Dominik Kirst Formalising Metamathematics September 14th, 2021 29

Signature Transformations

Given a finite and discrete signature Σ with arities bounded by n, we have:

FSATEQ(Σ;≡) 4 FSAT(Σ) 4 FSAT(0;Pn+2) 4 FSAT(0;∈2)

First reduction: axiomatise that ≡ is a congruence for the symbols in Σ

Second reduction:
Encode k-ary functions as (k + 1)-ary relations
Align the relation arities to be constantly n + 1
Merge relations into a single (n + 2)-ary relation indexed by constants
Interpret constants with fresh variables

Caveat: intermediate reductions may rely on discrete models...

Dominik Kirst Formalising Metamathematics September 14th, 2021 30

Discrete Models

FSAT′(Σ)ϕ if FSAT(Σ)ϕ on a discrete model

Can every finite modelM be transformed to a discrete finite modelM′?

Idea: first-order indistinguishability x=̇y := ∀ϕρ.M �x ·ρ ϕ↔M �y ·ρ ϕ

Lemma
The relation x=̇y is a decidable congruence for the symbols in Σ.

Fact
FSAT′(Σ)ϕ iff FSAT(Σ)ϕ, hence in particular FSAT′(Σ)ϕ 4 FSAT(Σ)ϕ.

Proof.
IfM �ρ ϕ pickM′ to be the quotient ofM under x=̇y .

Dominik Kirst Formalising Metamathematics September 14th, 2021 31

Compressing Relations: FSAT(0;Pn) 4 FSAT(0;∈2)
Intuition: encode P x1 . . . xn as (x1, . . . , xn) ∈ p for a set p representing P

So let’s play set theory! For a set d representing the domain we define ϕ′∈:

(P x1 . . . xn)′∈ := “(x1, . . . , xn) ∈ p” (∀̇z . ϕ)′∈ := ∀̇z . z ∈ d →̇ (ϕ)′∈
(ϕ �̇ ψ)′∈ := (ϕ)′∈ �̇ (ψ)′∈ (∃̇z . ϕ)′∈ := ∃̇z . z ∈ d ∧̇ (ϕ)′∈

Then ϕ∈ is ϕ′∈ plus asserting ∈ to be extensional and d to be non-empty.

Fact
FSAT(0;Pn)ϕ iff FSAT(0;∈2)ϕ∈, hence FSAT(0;Pn) 4 FSAT(0;∈2).

Proof.
The hard direction is to construct a model of ϕ∈ given a modelM of ϕ.
We employ a segment of the model of hereditarily finite sets by Smolka and
Stark (2016) large enough to accommodateM.

Dominik Kirst Formalising Metamathematics September 14th, 2021 32

Full Signature Classification

Composing all signature transformations verified we obtain:

Theorem
If Σ contains either an at least binary relation or a unary relation together
with an at least binary function, then PCP reduces to FSAT(Σ).

On the other hand, FSAT for monadic signatures remains decidable:

Theorem
If Σ is discrete and has all arities bounded by 1 or if all relation symbols
have arity 0, then FSAT(Σ) is decidable.

In any case, since one can enumerate all finite models up to extensionality:

Fact
If Σ is discrete and enumerable, then FSAT(Σ) is enumerable.

Dominik Kirst Formalising Metamathematics September 14th, 2021 33

Example 3:
First-Order Axiom Systems∗

∗K. and Marc Hermes at ITP’21.
Dominik Kirst Formalising Metamathematics September 14th, 2021 34

General Idea

Is a formula ϕ entailed by an axiomatisation A?

Strategy if A is strong enough to capture computation:
Encode Turing machine M as formula ϕM

Verify that M halts iff A � ϕM

Verify that M halts iff A ` ϕM (→ direction by hand)
Instead of TM use problems suitable to encode in A

As hard as consistency and incompleteness:
Reducing a non-trivial problem P to A ` ϕ shows A consistent
Undecidability implies incompleteness for enumerable axiomatisations

Dominik Kirst Formalising Metamathematics September 14th, 2021 35

Connections to Consistency and Incompleteness

Fact (Consistency)

If p � A` and there is x with ¬p x then A 6` ⊥.

Proof.
Let f witness p � A`. Then A 6` f x by ¬p x and thus A 6` ⊥.

Fact (Synthetic Incompleteness)

If A is complete (∀ϕ.A ` ϕ∨A ` ¬ϕ) and consistent, then A` is decidable.

Proof.
By application of Post’s theorem. The premises are enumerability of A`

(immediate), enumerability of its complement (as A 6` ϕ iff A ` ¬ϕ), and
logical decidability of A` (as A ` ϕ ∨ A ` ¬ϕ implies A ` ϕ ∨ A 6` ϕ).

Dominik Kirst Formalising Metamathematics September 14th, 2021 36

Sketch for Peano Arithmetic

Use axiomatisation PA over standard signature (0, S,+, · ;≡).

Diophantine constraints (cf. Larchey-Wendling and Forster (2019)):
Instances are lists L of constraints xi = 1 | xi + xj = xk | xi · xj = xk
L is solvable if there is an evaluation η : N→ N solving all constraints

Theorem
L = [c1, . . . , ck] with maximal index xn is solvable iff PA � ∃nc1 ∧ · · · ∧ ck .

Proof.
If L has solution η instantiate the existential quantifiers with numerals
η1, . . . , ηn. Then the axioms of PA entail the constraints.
If PA � ∃nc1 ∧ · · · ∧ ck use the standard model N to extract solution η.

Fact
L = [c1, . . . , ck] with maximal index xn is solvable iff PA ` ∃nc1 ∧ · · · ∧ ck .

Dominik Kirst Formalising Metamathematics September 14th, 2021 37

Interlude: Models of ZF
Sets-as-trees interpretation (Aczel (1978)):

Type T of well-founded trees with constructor τ : ∀X . (X → T)→ T
Equality of trees s, t given by isomorphism s ≈ t

Membership defined by s ∈ τ X f := ∃x . s ≈ f x

Set operations implemented by tree operations:
I ∅ := τ ⊥ elim⊥
I {s, t} := τ B (λb. if b then s else t)
I ω := τ N (λn. n) where 0 := ∅ and S n := n ∪ {n}
I ...

Axioms needed in Coq:
EM to really interpret ZF instead of IZF
Replacement needs a type-theoretical choice axiom (Werner (1997))
Strong quotient axiom for (T ,≈) suffices (Kirst and Smolka (2019))
This yields a well-behaved model S: quotiented, standard numbers

Dominik Kirst Formalising Metamathematics September 14th, 2021 38

Sketch for ZF Set Theory
Use axiomatisation ZF over explicit signature (∅, {_,_},

⋃
,P, ω ;≡,∈).

Reduction from PCP:
Boolean encoding: tt = {∅} and ff = ∅
String encoding: tt ff ff tt = (tt, (ff, (tt, (ff, ∅))))

Stack encoding: S = {(s1, t1), . . . , (sk , tk)}
Combination encoding: S ++B :=

⋃
s/t∈S{(sx , ty) | (x , y) ∈ B}

f . n := (∅, S) ∈ f ∧ ∀(k,B) ∈ f . k ∈ n→ (k + 1,S ++B) ∈ f

ϕS := ∃f , n,B, x . n ∈ ω ∧ f . n ∧ (n,B) ∈ f ∧ (x , x) ∈ B

Theorem
PCPS iff ZF � ϕS and PCP S iff ZF ` ϕS .

Proof.
Direction → by proofs in ZF and ← relies on standard model S.

Dominik Kirst Formalising Metamathematics September 14th, 2021 39

Conclusion

Dominik Kirst Formalising Metamathematics September 14th, 2021 40

Ongoing and Future Work

Undecidability and incompleteness of finitary set theories

Minimalistic undecidability proof for the binary signature

Undecidability and incompleteness of second-order logic

Constructive analysis of Tennenbaum’s theorem

Engineering: tool support, connect Coq developments

Dominik Kirst Formalising Metamathematics September 14th, 2021 41

Take-Home Messages

Synthetic computability: elegant formalism, feasible to mechanise

Metamathematics: rewarding to revisit in constructive type theory

Coq mechanisation: implements constructive proofs as algorithms

If you work on undecidability proofs in Coq:
Our library could help you and is open for contributions

Thank You!

Dominik Kirst Formalising Metamathematics September 14th, 2021 42

Bibliography I

Aczel, P. (1978). The type theoretic interpretation of constructive set theory. In Studies
in Logic and the Foundations of Mathematics, volume 96, pages 55–66. Elsevier.

Bauer, A. (2006). First steps in synthetic computability theory. Electronic Notes in
Theoretical Computer Science, 155:5 – 31. Proceedings of the 21st Annual
Conference on Mathematical Foundations of Programming Semantics (MFPS XXI).

Börger, E., Grädel, E., and Gurevich, Y. (1997). The Classical Decision Problem.
Perspectives in Mathematical Logic. Springer-Verlag Berlin Heidelberg.

Coquand, T. and Huet, G. (1986). The calculus of constructions. PhD thesis, INRIA.

Forster, Y., Kirst, D., and Smolka, G. (2019). On synthetic undecidability in coq, with
an application to the entscheidungsproblem. In Proceedings of the 8th ACM
SIGPLAN International Conference on Certified Programs and Proofs.

Forster, Y., Kirst, D., and Wehr, D. (2020a). Completeness Theorems for First-Order
Logic Analysed in Constructive Type Theory. In Symposium on Logical Foundations
Of Computer Science, 2020, Deerfield Beach, Florida, U.S.A.

Forster, Y., Larchey-Wendling, D., Dudenhefner, A., Heiter, E., Kirst, D., Kunze, F.,
Smolka, G., Spies, S., Wehr, D., and Wuttke, M. (2020b). A Coq Library of
Undecidable Problems. In CoqPL 2020, New Orleans, LA, United States.

Dominik Kirst Formalising Metamathematics September 14th, 2021 43

Bibliography II
Gödel, K. (1931). Über formal unentscheidbare sätze der principia mathematica und

verwandter systeme i. Monatshefte für mathematik und physik, 38(1):173–198.

Gödel, K. (1930). Die Vollständigkeit der Axiome des logischen Funktionenkalküls.
Monatshefte für Mathematik und Physik, 37:349–360.

Kirst, D. and Hermes, M. (2021). Synthetic undecidability and incompleteness of
first-order axiom systems in coq. In 12th International Conference on Interactive
Theorem Proving (ITP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Kirst, D. and Larchey-Wendling, D. (2020). Trakhtenbrot’s theorem in coq, a
constructive approach to finite model theory. arXiv preprint arXiv:2004.07390.

Kirst, D. and Smolka, G. (2019). Categoricity results and large model constructions for
second-order zf in dependent type theory. Journal of Automated Reasoning,
63(2):415–438.

Larchey-Wendling, D. and Forster, Y. (2019). Hilbert’s Tenth Problem in Coq. In 4th
International Conference on Formal Structures for Computation and Deduction,
volume 131 of LIPIcs, pages 27:1–27:20.

Libkin, L. (2010). Elements of Finite Model Theory. Springer Publishing Company,
Incorporated, 1st edition.

Manna, Z. (2003). Mathematical theory of computation. Dover Publications, Inc.

Dominik Kirst Formalising Metamathematics September 14th, 2021 44

Bibliography III

Paulin-Mohring, C. (1993). Inductive definitions in the system coq rules and properties.
In International Conference on Typed Lambda Calculi and Applications, pages
328–345. Springer.

Richman, F. (1983). Church’s thesis without tears. The Journal of symbolic logic,
48(3):797–803.

Smolka, G. and Stark, K. (2016). Hereditarily Finite Sets in Constructive Type Theory.
In Interactive Theorem Proving - 7th International Conference, ITP 2016, Nancy,
France, August 22-27, 2016, volume 9807 of LNCS, pages 374–390. Springer.

Tarski, A. (1953). I: A general method in proofs of undecidability. In Tarski, A., editor,
Undecidable Theories, volume 13 of Studies in Logic and the Foundations of
Mathematics, pages 1–34. Elsevier.

The Coq Development Team (2021). The coq proof assistant.

Werner, B. (1997). Sets in types, types in sets. In International Symposium on
Theoretical Aspects of Computer Software, pages 530–546. Springer.

Dominik Kirst Formalising Metamathematics September 14th, 2021 45

	References
	Appendix

