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Abstract

Using the Coq proof assistant, we investigate the minimal
non-constructive principles needed to show soundness and
completeness of propositional bi-intuitionistic logic. Before
being revisited and corrected by Goré and Shillito, the com-
pleteness of bi-intuitionistic logic, an extension of intuition-
istic logic with a dual operation to implication, had a rather
erratic history, making it an ideal case for computer mecha-
nisation. Moreover, contributing a constructive perspective,
we observe that the completeness of bi-intuitionistic logic
explicates the same characteristics already observed in an
ongoing e�ort to analyse completeness theorems in general.
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1 Introduction

Bi-Intuitionistic Logic (BIL) extends intuitionistic proposi-
tional logic with a binary operator , dual to →, variously
called exclusion, subtraction, or co-implication. While BIL is
a conservative extension of intuitionistic logic, it does not
satisfy the disjunction property: the formula i ∨ ∼i , where
∼ is the bi-intuitionistic negation, is a theorem of BIL. Thus,
this logic sits in between intuitionistic and classical logic,
being tightly connected to both.
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Historically, Klemke was certainly the �rst to introduce
this logic [24]. However, it was Rauszer who really laid its
foundations through a series of interdependent articles [34–
40], from 1974 to 1977, culminating in her Ph.D. thesis in
1980 [41]. In her work, she characterised this logic under vari-
ous aspects: axiomatic calculus, algebraic semantics, sequent
calculus, and Kripke semantics. Alas, Rauszer’s foundations
for BIL are quite shaky. Several critical mistakes were later
detected in her work: a counterexample to her claim of ad-
missibility of cut for the sequent calculus [30], confusions
about the holding of the deduction theorem in BIL [9], issues
in completeness proofs [9]. Thus, it is fair to say that the
history of BIL is a troubled one.

In particular, themistakes in Rauszer’s completeness proofs
went unnoticed for almost 50 years: it is only in 2020 that
Goré and Shillito (the �rst author of the present paper) ex-
posed them and provided a correct completeness proof [9].
However, their proof was not mechanised and visibly relied
on classical logic as the metalogic.
The mechanisation of Goré and Shillito’s proof was only

carried on by Shillito three years later in his Ph.D. thesis [44],
in the interactive theorem prover Coq [46]. Without a doubt,
this mechanisation brings a qualitative change to the pen-
and-paper completeness (and soundness) proof: it is brought
to the highest standards of reliability, as each single step
in the proof is now unambiguously mechanically checked.
In addition to that, it helps approximate the level of non-
constructivity involved from above: the library Classical

for classical logic is invoked in various places, supporting the
multiple uses of the law of excluded middle (LEM) through-
out the proof.
As a consequence, we can safely assert that the result of

completeness for BIL has a de facto non-constructive certi-
�ed proof. The perspective of constructive reverse mathe-
matics [3, 18] then suggests the following approximation
from below: which non-constructive principles, if any, are
necessary for this completeness result? Incidentally, a similar
question can already be asked about the soundness result, as
some axioms of BIL concerning have a classical �avour
that is not interpretable in a fully constructive meta-logic.

In this paper, we investigate the minimal non-constructive
principles used to show soundness and completeness of BIL.
Our investigations are led using the interactive theorem
prover Coq, which is a perfect framework for constructive

This work is licensed under a Creative Commons Attribution 4.0 Interna-
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reverse mathematics, as it is based on a rather agnostic con-
structive type theory that allows �ne sub-classical distinc-
tions. In particular, constructive proofs in Coq can be ex-
tracted to executable programs, which for the speci�c case
of completeness could in principle take the form of rei�ca-
tion algorithms turning meta-level (semantic) proof terms
into object-level (syntactic) derivations. This method has
already been used extensively in the case of �rst-order logic
and related formalisms, by Herbelin and Ilik [14] and oth-
ers [8, 11, 15, 19]. We show that similar observations apply
to BIL.
More concretely, we consider an alternative formulation

of the Kripke semantics for BIL, which is classically equiva-
lent to the traditional version, but intuitionistically weaker.
For this formulation, we show that arbitrary soundness and
completeness are equivalent to LEM. Soundness can be given
a constructive proof if we restrict our attention to de�nite
models, i.e. models which have a de�nite forcing relation or,
more general, to models that at least interpret in accor-
dance to its characterising axioms. On the other hand, as in-
termediate steps of the completeness proof, model existence
is equivalent to the weak law of excluded middle (WLEM)
while quasi-completeness is equivalent to the even weaker
principle “weak law of excluded middle shift” (WLEMS) that
has been identi�ed by Kirst [19] and studied in the context
of �rst-order logic by Herbelin and Kirst [15]. Finally, the
logical strength of completeness restricted to semi-decidable
contexts is connected to Markov’s principle (MP) [26] and,
as a preliminary approximation, bounded by WLEMS from
above and a version of WLEMS for semi-decidable predicates
from below.
In Section 2, we sketch the constructive type theory we

use as foundation and discuss some non-constructive prin-
ciples and computational notions. Section 3 introduces the
basics of bi-intuitionistic logic. Notably, we present the re-
sults of the mechanisation of Shillito. The results in construc-
tive reverse mathematics we obtained are presented in Sec-
tion 4. Finally, we provide concluding remarks in Section 5,
including a discussion of the Coq mechanisation as well as
related and future work. Our mechanisation is presented
here: h�ps://ianshil.github.io/CPPBiInt/. All mechanised re-
sults are accompanied by a clickable keyboard symbol “(Ï)"
leading to their mechanisation.

2 Preliminaries

We work in a constructive type theory such as the calcu-
lus of inductive constructions (CIC) [2, 29] underlying the
Coq proof assistant [46] and, in this preliminary section,
sketch the features we need. To begin, we assume a pred-
icative hierarchy of computational types closed under the
usual type formers like (dependent) function types and (de-
pendent) pair types. We further assume an impredicative
universe P of propositions in which the above type formers

take common logical notation. Inductive types and predi-
cates can be formed via a general scheme, for instance to
accommodate the types N of natural numbers, B of boolean
values, and of �nite lists over a given type. Elimination of in-
ductive predicates into computational types is only allowed
if no computational information is present, so for instance
for equality G = ~ but not for disjunction % ∨& or existential
quanti�cation ∃G . % G .

The logic represented in P is constructive but also agnostic,
so in particular LEM is not provable but it can be assumed
consistently. In Figure 1, we list a few more unprovable prin-
ciples that play a role in the characterisation of completeness
results. While LEM states that every proposition % is de�nite,
i.e. satis�es %∨¬% , double negation elimination (DNE) states
that every proposition % is stable, i.e. satis�es ¬¬% → % . In
that wording, Markov’s principle (MP) states that solvability
of boolean sequences is stable and weak excluded middle
(WLEM) states that negative propositions are de�nite. While
these four principles are standard, weak excluded middle
shift (WLEMS) has only recently been identi�ed as the ex-
act logical strength of a certain formulation of complete-
ness [15, 19]. The name hints at the equivalent formulation
of WLEMS as

∀% . (∀=.¬¬(¬% = ∨ ¬¬% =)) → ¬¬(∀=.¬% = ∨ ¬¬% =)

which is a visible instance of double negation shift

∀% . (∀=.¬¬% =) → ¬¬(∀=. %)

for predicates taking the form of weak excluded middle. Lift-
ing the wording of de�nite and stable propositions to predi-
cates in the canonical way, we may also describe WLEMS as
not not de�niteness of stable predicates.

Underlying the above equivalent formulation of WLEMS
via the provable premise ∀=.¬¬(¬% = ∨ ¬¬% =) is a gener-
ally noteworthy observation in constructive logic: while not
every proposition can be shown to be de�nite, every propo-
sition is not not de�nite, i.e. the principle ∀% : P.¬¬(% ∨¬%)

is provable. As a consequence, when proving negative goals,
we have limited access to classical reasoning since for �nitely
many propositions we may assume % ∨ ¬% . This will be of
use and clearly verbalised in several proofs.
We collect a few simple facts about the given principles:

Lemma 2.1. The following connections are provable.

• Every de�nite proposition is stable.

• LEM is equivalent to DNE.

• LEM implies both MP and WLEM.

• WLEM implies WLEMS.

Just like every constructive foundation, the sketched type
theory allows for a synthetic perspective on computability
theory [1, 7, 42]: every de�nable function is computable by
construction, so we can develop the usual notions and results
without reference to a concrete model of computation such
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LEM := ∀% : P. % ∨ ¬%

DNE := ∀% : P.¬¬% → %

MP := ∀5 : N→ B.¬¬(∃=. 5 = = �) → ∃=. 5 = = �

WLEM := ∀% : P.¬% ∨ ¬¬%

WLEMS := ∀% : N→ P.¬¬(∀=.¬% = ∨ ¬¬% =)

Figure 1. Non-constructive principles used in this paper

as Turing machines. Next to allowing an elegant mathemati-
cal development, this approach is particularly helpful when
using a proof assistant, since working with a formal model
of computation introduces considerable mechanisation over-
head. For this paper, we only introduce the synthetic notion
of semi-decidability:

De�nition 2.2. A proposition % : P is semi-decidable if
there is a boolean sequence 5 : N→ B with

% ↔ ∃=. 5 = = �

and a predicate % : - → P is semi-decidable if there is family
of boolean sequences 5 : - → N→ B with

∀G . (% G ↔ ∃=. 5 G = = �)

The idea is that the boolean sequences 5 : N → B are
considered to be computable, so for a semi-decidable propo-
sition it is possible to e�ectively recognise its truth by sys-
tematically searching through all numbers for a solution
of 5 , while there is no way to e�ectively determine if no
such solution will ever be found. Since MP controls the be-
haviour of boolean sequences, it also controls the behaviour
of semi-decidable propositions:

Lemma 2.3. MP implies that semi-decidable propositions and

predicates are stable.

Note that the employed synthetic view on semi-decidability
is justi�ed by two observations. First, every concrete semi-
decider 5 : N→ B de�nable in CIC is indeed computable in
the usual sense referring to a model like Turing machines.
Secondly, if we were to formally de�ne Turing machines
within CIC, it could be shown that every object-level semi-
decision procedure conversely induces a correspondingmeta-
level function 5 : N→ B.

3 Basics of Bi-intuitionistic Logic

We present the basics of bi-intuitionistic logic: its syntax,
axiomatic proof system, Kripke semantics and known facts
of relevance.

3.1 Syntax

Asmentioned above, bi-intuitionistic logic is expressed in the
language of intuitionistic logic extended with the exclusion
operator ¤ . More formally:

De�nition 3.1. (Ï) We de�ne the propositional language
L and obtain its inductive type �>A< of bi-intuitionistic for-
mulae through its grammar:

i ::= ? : N | ¤⊥ | ¤⊤ | i ¤∧ i | i ¤∨ i | i ¤→ i | i ¤ i

Here we use dots to distinguish the object-level connectives
of bi-intuitionistic logic from the meta-level connectives of
the ambient type theory. We also de�ne the abbreviations
¤¬i := (i ¤→ ¤⊥) and ¤∼i := ( ¤⊤ ¤ i), respectively called nega-
tion and weak negation.

The added binary operatori ¤ k is intended to be the dual
of i ¤→k and is usually read as “i excludesk ”. Consequently,
¤∼ is also de�ned dually to ¤¬.
Note that our language is built on a countably in�nite

set of propositional variables, i.e. the set of natural numbers
N. This has two e�ects: it makes our set of formulae count-
ably in�nite, hence enumerable, and gives us decidability of
equality on formulae.
In the following, we use the greek letters i,k, j, X, . . .

for formulae and Γ,Δ,Φ,Ψ . . . for sets or lists of formulae,
depending on the context. When Γ refers to a set of formulae,
we write Γ, i or i, Γ to mean Γ ∪ {i}. For a set of formulae

Γ, we de�ne Γ as {i : i ∉ Γ}, where i ∉ Γ means ¬(i ∈ Γ).

3.2 Axiomatic Calculus

When considering logics as consequence relations, tradi-
tional Hilbert calculi become inadequate proof systems. They
are designed to capture logics as sets of theorems, i.e. sets of
the form {i : ⊢ i}, and notably led to historical confusions
once considering sets of the form {(Γ, i) : Γ ⊢ i} [9, 12].

Generalised Hilbert calculi manipulate expressions Γ ⊢ i ,
called consecutions, where Γ is a set of formulae called a
context. They clearly express the distinction between the
notion of deducibility from a set of assumptions, and theo-
remhood. They avoid the confusions of traditional Hilbert
calculi, pertaining notably to the deduction theorem [9]. Still,
they correspond to traditional Hilbert calculi when restricted
to consecutions of the shape ∅ ⊢ i .
The generalised Hilbert calculus BIH [9] (Ï) for BIL ex-

tends the one for intuitionistic logic, containing the axioms
�1 to �10 (implicit here), with the axioms �11 to �14 and the
rule (wDN), shown in Figure 2. There, A in the rule (Ax)
refers to the set of all instances of axioms. In the following
we write Γ ⊢ i to mean that the syntactic expression Γ ⊢ i

is provable in BIH, i.e. there is a tree of consecutions built
using the rules in Figure 2 with instances of (Ax) and (El) as
leaves. We also abbreviate ¬(Γ ⊢ i) by Γ ⊬ i . We formally
de�ne the logic BIL as the set {(Γ, i) : Γ ⊢ i}.
Note that our calculus BIH is the calculus wBIH of Goré

and Shillito [9]. In their work, they also consider a stronger
system called sBIH, obtained by modifying the premise of
the rule (wDN) to Γ ⊢ i . As the letters w and s are only used
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�11 i ¤→ (k ¤∨ (i ¤ k ))
∅ ⊢ i

Γ ⊢ ¤¬ ¤∼i
(wDN)

�12 (i ¤ k ) ¤→ ¤∼(i ¤→k )

�13 ((i ¤ k ) ¤ j) ¤→ (i ¤ (k ¤∨ j))

�14 ¤¬(i ¤ k ) ¤→ (i ¤→k )

i ∈ A

Γ ⊢ i
(Ax)

i ∈ Γ

Γ ⊢ i
(El)

Γ ⊢ i Γ ⊢ i ¤→k

Γ ⊢ k
(MP)

Figure 2. Generalised Hilbert calculus BIH for BIL

to distinguish the two calculi, we drop w in this paper for
simplicity.

3.3 Kripke Semantics

We proceed to de�ne a Kripke semantics for BIL which
slightly departs from the traditional one [41]. The latter was
used in Shillito’s mechanisation [44].

Both the traditional semantics and ours are de�ned using
(Kripke) models which are identical to the ones of intuition-
istic logic, as shown below.

De�nition 3.2. (Ï) A model M is a tuple (,, ≤, � ), where
(,, ≤) is a poset and � : N→ P(, ) is a persistent interpre-
tation function:

∀E,F ∈, .∀? ∈ N. (F ≤ E → F ∈ � (?) → E ∈ � (?))

Our semantics extends the forcing relation of intuitionistic
logic to ¤ in the following way.

De�nition 3.3. (Ï) Given a model M = (,, ≤, � ), we de-
�ne the forcing relationM,F ⊩ i between a worldF ∈,

and a formula i as follows:

M,F ⊩ ? := F ∈ � (?)

M,F ⊩ ¤⊤ := ⊤

M,F ⊩ ¤⊥ := ⊥

M,F ⊩ i ¤∧k := M,F ⊩ i ∧ M,F ⊩ k

M,F ⊩ i ¤∨k := M,F ⊩ i ∨ M,F ⊩ k

M,F ⊩ i ¤→k := ∀E ≥ F.(M, E ⊩ i → M, E ⊩ k )

M,F ⊩ i ¤ k := ¬(∀E ≤ F.(M, E ⊩ i → M, E ⊩ k ))

We abbreviate ¬(M,F ⊩ i) byM,F ⊮ i .

Crucially, while the semantic clause for ¤→ looks forwards
on the relation ≤, the clause for ¤ looks backwards. This
circumstance shows that BIL shares similarities with tense
logic [31–33].
Note that our semantic clause for ¤ is intuitionistically

weaker but classically equivalent to the traditional clause [41]:

∃E ≤ F.(M, E ⊩ i ∧ M, E ⊮ k )

Two points motivate our clause. First, our mechanisation led
us to believe that the strength of the traditional clause more
readily forces one to use non-constructive principles, notably
in the proof of the Truth lemma 3.10. Second, to our eyes the
duality between ¤→ and ¤ is more visibly expressed in our
clause. Indeed, it is obtained in two steps via the negation of

the clause for ¤→ , and the reversing of the order between E

andF , witnessing the tense logic �avour of ¤ .
The main feature of the Kripke semantics for intuitionistic

logic, i.e. persistence, is preserved in our semantics for BIL.

Lemma 3.4 (Persistence). (Ï) LetM = (,, ≤, � ) be a model.

The following holds.

∀E,F ∈, .∀i. (F ≤ E → M,F ⊩ i → M, E ⊩ i)

Finally, we de�ne the (local) consequence relation on our
semantics , whereM,F ⊩ Γ means ∀W ∈ Γ.(M,F ⊩ W).

Γ |= i if ∀M .∀F. (M,F ⊩ Γ → M,F ⊩ i)

We abbreviate ¬(Γ |= i) by Γ ̸ |= i .
Note that by distributing the quanti�cation overF to the

antecedent and consequent of the implication, we obtain the
global consequence relation. The latter corresponds to the
generalised Hilbert calculus sBIH [9].

3.4 Constructive Proof-theoretic Results

Here, we present constructively-obtained proof-theoretic
results from the mechanisation of Shillito [44]. They express
properties of the proof systemBIH. We reuse these properties
when considering our semantics later on in the paper.

Unsurprisingly, we can prove that BIL is a �nitary logic:
it satis�es identity (Ï), monotonicity (Ï), compositional-
ity (Ï), structurality (Ï), and �niteness (Ï) [6, 25]. These
properties are expressed below, where f : N → �>A< is
a uniform substitution and ⊆5 is the �nite subset relation
(which we also use with a list on the left).

Identity i ∈ Γ → Γ ⊢ i

Monotonicity Γ ⊆ Γ
′ → Γ ⊢ i → Γ

′ ⊢ i

Compositionality Γ ⊢ i → (∀W ∈ Γ.(Δ ⊢ W)) → Δ ⊢ i

Structurality Γ ⊢ i → Γ
f ⊢ if

Finiteness Γ ⊢ i → ∃Γ′ ⊆5 Γ.(Γ′ ⊢ i)

To present the next results in an elegant way, we need to
introduce some helpful derived notions.

De�nition 3.5. (Ï) Let Δ be a list of formulae. We de�ne
¤∨ : ;8BC �>A< → �>A< recursively on the structure of Δ:

• If Δ = =8; then ¤∨Δ := ¤⊥

• If Δ = i :: Δ
′ then ¤∨Δ := i ¤∨ ¤∨Δ

′

The function ¤∨ essentially creates the disjunction of all
the members of a list of formulae, with an additional dis-
junct ¤⊥, the neutral element of ¤∨ . Using ¤∨, we can bring
consecutions Γ ⊢ i to a fully symmetric setting via pairs of
the shape [Γ | Δ], constituted of a left and right context.

De�nition 3.6. We de�ne the following:
1. ⊢ [Γ | Δ] if Γ ⊢ ¤∨Δ

′ for some Δ′ ⊆5 Δ (Ï);
2. ⊬ [Γ | Δ] if ¬(⊢ [Γ | Δ]), in which case we say that

[Γ | Δ] is relative consistent;
3. [Γ | Δ] is complete if Γ ∪ Δ = �>A< (Ï).
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While these pairs are crucially used in the completeness
proof, as we shall see, they are already convenient to express
interesting properties of BIH.

Theorem 3.7. We have the following:

1. ⊢ [∅ | i ¤∨ ¤∼i]

2. ⊢ [∅ | (i ¤ k ) ¤→ j] ↔ ⊢ [∅ | i ¤→ (k ¤∨ j)]

3. ⊢ [Γ, i | k ] ↔ ⊢ [Γ | i ¤→k ]

4. ⊢ [i | k,Δ] ↔ ⊢ [i ¤ k | Δ]

(1) above shows that a bi-intuitionistic version of the law
of excluded-middle holds in BIL (Ï). (2) is an object language
analogue of the algebraic dual residuation property below
(Ï).

0 ≤ 1 ∨ 2

0 1 ≤ 2

(3) is the deduction theorem for BIL (Ï), while (4) is its dual
deduction theorem (Ï).

3.5 Non-constructivity and Traditional Semantics

Then, we turn to the non-constructive results from Shillito’s
mechanisation [44]. These results involve the traditional
semantics, and use the full strength of classical logic via
multiple applications of LEM. Note that in the presence of
LEM, both versions of the semantics are equivalent, suggest-
ing the relevance of Shillito’s results to our work. The most
important of these results are soundness and completeness.

Theorem 3.8 (cf. Theorem 8.8.1 [44]). The following holds.
Soundness Γ ⊢ i → Γ |= i

Completeness Γ |= i → Γ ⊢ i

Soundness is proved as usual by showing that all axioms
are valid and that rules of BIH preserve semantic conse-
quence. Here, the non-constructivity appears through LEM
in the proof of the validity of the axioms �11, �13 and �14.
Completeness is proved via a canonical model construc-

tion, which has relative consistent and complete pairs [Γ | Δ]

as points [43]:

De�nition 3.9. The canonical modelM2
= (, 2 , ≤2 , �2 ) is

de�ned in the following way:

1. , 2
= {[Γ | Δ] : [Γ | Δ] is complete ∧ ⊬ [Γ | Δ]};

2. [Γ1 | Δ1] ≤
2 [Γ2 | Δ2] if Γ1 ⊆ Γ2;

3. �2 (?) = {[Γ | Δ] ∈, 2
: ? ∈ Γ}.

The canonical model satis�es the crucial truth lemma,
relating elementhood and forcing.

Lemma 3.10 (Truth lemma). For every [Γ | Δ] ∈, 2 :

k ∈ Γ ↔ M2 , [Γ | Δ] ⊩ k

Apenultimate step towards completeness consists in show-
ing that one can extend a relative consistent pair [Γ | i],
i.e. Γ ⊬ i , to a complete and relative consistent pair. This
result is a bi-intuitionistic version of the Lindenbaum lemma.

Lemma 3.11 (Lindenbaum lemma). Assuming ⊬ [Γ | Δ],

there exist Γ′ ⊇ Γ and Δ′ ⊇ Δ such that [Γ′ | Δ′] is complete

and ⊬ [Γ′ | Δ′].

Finally, we compile the results above to obtain an inter-
mediate result, called model existence.

Γ ⊬ i → ∃M .∃F.(M,F ⊩ Γ ∧M,F ⊮ i)

The assumption Γ ⊬ i easily allows us to obtain ⊬ [Γ | i],
on which we can apply Lemma 3.11. The obtained complete
and relative consistent pair can thus be found as a point in
the canonical model, which forces Γ but not i as indicated
by Lemma 3.10.
Given that model existence is classically equivalent (but

intuitionistically weaker) to completeness, we have reached
a non-constructive proof of the latter. In a similar way, we
could use the following intermediate result, yet weaker than
model existence, to obtain completeness.

Quasi-completeness Γ ⊬ i → Γ ̸ |= i

As mentioned above, the mechanisation of Shillito [44]
heavily used LEM in all of the results pertaining to the tra-
ditional semantics. In the remainder of this paper, we use
Shillito’s work as a basis but modify it to our more construc-
tive semantics. On this ground, we proceed to determine
equivalences between variants of soundness and complete-
ness results and non-constructive principles.

4 Constructive Reverse Mathematics
Results

In this section, we take a closer look at the non-constructive
principles underlying the soundness and completeness prop-
erties of BIH. In the case of soundness, we show it equivalent
to full LEM, while completeness, though in full generality
also equivalent to LEM, can be broken down into weaker
forms equivalent to weaker logical principles. Moreover, we
provide a preliminary characterisation of completeness re-
stricted to semi-decidable contexts. Most of these observa-
tions have already been observed and mechanised for related
logical formalisms [8, 11, 14, 15, 19]. To allow a meaningful
analysis, all proofs in this section are constructive where not
explicitly stated otherwise.

4.1 Soundness

Starting with soundness, we observe that the required clas-
sical reasoning can be assumed as a property of the targeted
models M, for instance in requiring that they be de�nite,
meaning that they satisfy M,F ⊩ i or M,F ⊮ i for allF .

Lemma 4.1. (Ï) BIH is sound for de�nite models.

Proof. We show Γ |= i by induction on a given derivation of
Γ ⊢ i . The validity of the inference holds constructively us-
ing routine arguments and so does the validity of all axioms
but �11, �13, and �14.
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• For �11 we need to show that assuming M,F ⊩ i we
have either M,F ⊩ k or M,F ⊩ i ¤ k . To proceed,
we use the de�niteness ofM to distinguish whether
M,F ⊩ k or M,F ⊮ k . In the former case we are
done, in the latter case we show M,F ⊩ i ¤ k , so
for a contradiction we assume that M,F ′

⊩ i implies
M,F ′

⊩ k for all predecessorsF ′ ≤ F . For the choice
F ′

:= F we thus obtain M,F ⊩ k , in contradiction to
the assumption M,F ⊮ k .

• For �13 we need to show that M,F ⊩ (i ¤ k ) ¤ j

impliesM,F ⊩ i ¤ k ¤∨ j . So for a contradiction we
assume thatM,F ′

⊩ i impliesM,F ′
⊩ k ¤∨ j for ev-

ery predecessorF ′ ≤ F and derive a contradiction by
using the assumptionM,F ⊩ (i ¤ k ) ¤ j . Hence we
need to show that for every predecessorF ′ ≤ F with
M,F ′

⊩ i ¤ k we have M,F ′
⊩ j . By de�niteness

of M, it su�ces to refute M,F ′
⊮ j . Now apply-

ing M,F ′
⊩ i ¤ k , we assume M,F ′′

⊩ i for some
F ′′ ≤ F ′ and need to show M,F ′′

⊩ k . Then since
by transitivity F ′′ ≤ F , we obtain M,F ′′

⊩ k ¤∨ j ,
so either M,F ′′

⊩ k which is the desired claim, or
M,F ′′

⊩ j which yields a contradiction toM,F ′
⊮ j

via persistence.
• For �14 we need to show that M,F ⊩ ¤¬(i ¤ k ) im-
plies M,F ⊩ i ¤→k . So for some successor F ′ ≥ F

we assume M,F ′
⊩ i and show M,F ′

⊩ k by de-
riving a contradiction from M,F ′

⊮ k , once more
employing the de�niteness of M. Applying the as-
sumption M,F ⊩ ¤¬(i ¤ k ) forF ′ it then remains to
showM,F ′

⊩ i ¤ k , which follows fromM,F ′
⊩ i

together with M,F ′
⊮ k . □

In fact, it is straightforward to show that BIH is sound
for the class of BIH-models, de�ned as satisfying the critical
axioms�11,�13, and�14, which we conjecture to be a strictly
larger class than the de�nite models. In any case, it is the
largest class of models that BIH is sound for.

Lemma 4.2. (Ï) BIH is sound for M i� M is a BIH-model.

Proof. The soundness proof is by induction as in Lemma 4.1,
this time the critical axioms are treated by the assumption of
M being a BIH-model. Conversely, if BIH is sound for some
M, thenM satis�es all axioms and hence in particular is a
BIH-model. □

While it is possible to localise the use of classical logic to
establish soundness in the discussed sense, in full generality
all the strength of LEM is necessary.

Theorem 4.3. (Ï) Soundness is equivalent to LEM.

Proof. To obtain soundness from LEM, we just observe that
in the presence of LEM every model is clearly de�nite, so we
just apply Lemma 4.1.
For the converse, assuming a proposition % , we consider

the trivial modelMC with a singleworldF and interpretation

function � (?) := {F : %}, i.e. the set of all F such that %
holds. Since ∅ ⊢ i ¤∨ ¤∼i is derivable for every formula i

by (1) of Theorem 3.7, soundness for the trivial model in
particular yields that MC ,F ⊩ ? ¤∨ ¤∼? for every variable ? .
Now given thatF has no predecessors, this actually either
yields MC ,F ⊩ ? , from which we derive % , or MC ,F ⊮ ? ,
from which we derive ¬% . □

Corollary 4.4. If all models are BIH-models, then LEM holds.

We remark that the failure of general soundness to hold
constructively suggests that the class ofBIH-models provides
the reasonable semantics for BIH. As a price of this sugges-
tion, however, the reasonable formulation of completeness
will also only refer to BIH-models and is therefore poten-
tially harder to prove. In the next section we will show that
this restriction imposes no actual problem though, since the
employed canonical models are BIH-models by construction.

4.2 Completeness

We �rst explain why completeness in full generality is equiv-
alent to LEM. To this end, we observe a localised connection
between completeness and double negation elimination.

Lemma 4.5. Let C : P→ P be a class of propositions. We call

Γ a C-context if for every i there is % in C with i ∈ Γ i� % .

Then completeness for C-contexts turns all % in C stable.

Proof. Assume completeness for C-contexts and a proposi-
tion % in C with ¬¬% . We consider the context Γ := { ¤⊥ : %}

that contains the falsity constant ¤⊥ i� % holds, so in particu-
lar Γ is a C-context.

Now we �rst observe that Γ |= ¤⊥, since, given any model
M and worldF withM,F ⊩ Γ, showingM,F ⊩ ¤⊥ means
to derive a contradiction, so we can argue classically enough
to actually derive % from ¬¬% and since then ¤⊥ ∈ Γ, we
obtain the desired contradiction by M,F ⊩ Γ.
But then the assumed completeness implies Γ ⊢ ¤⊥ and

so in particular Γ′ ⊢ ¤⊥ for a list Γ′ ⊆5 Γ. If Γ′ is empty, we
obtain a contradiction from ∅ ⊢ ¤⊥ since a trivial model con-
structively entails the consistency of BIH using soundness
for de�nite models (Lemma 4.1). If, on the other hand, there
is some i ∈ Γ

′, then we actually obtain ¤⊥ ∈ Γ and thus % by
de�nition, so we successfully eliminated the double negation
from ¬¬% . □

The connection between completeness and LEM is then
nothing but a special case of the observed phenomenon.

Theorem 4.6. (Ï) Completeness is equivalent to LEM.

Proof. A classical completeness proof has been outlined in
Section 3.5. Conversely, assuming completeness, then by
Lemma 4.5 we obtain stability for the full class of proposi-
tions, thus conclude DNE which is equivalent to LEM. □

We remark that the here observed classicality of complete-
ness solely relies on the interpretation of ¤⊥ as ⊥ [26], which
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could be relaxed to so-called exploding models [47], a slightly
generalised semantics for which this e�ect is circumvented.
To disentangle from the interpretation of ¤⊥ and analyse the
orthogonal reasons for non-constructivity induced by the
interpretation of ¤∨, we now investigate the intermediate
steps of the completeness proof, namely the Lindenbaum
lemma, model existence, and quasi-completeness, for which
the interpretation of ¤⊥ does not matter. We begin with the
strongest form of the Lindenbaum lemma that can still be
proven fully constructively, where most crucially we cannot
obtain actual primeness of the extended context Γ′ (i.e. that
i ¤∨k ∈ Γ

′ implies that i ∈ Γ
′ ork ∈ Γ

′).

Lemma 4.7 (Constructivised Lindenbaum lemma). (Ï) As-

suming ⊬ [Γ | Δ], there is Γ′ ⊇ Γ with:

• Relative consistency: ⊬ [Γ′ | Δ]

• Deductive closure: Γ′ ⊢ i → i ∈ Γ
′

• Stability: membership in Γ
′ is stable

• Quasi-primeness: i ¤∨k ∈ Γ
′ → ¬¬(i ∈ Γ

′ ∨k ∈ Γ
′)

Proof. We construct Γ′ by iteration, using an enumeration
i= of formulas and letting Γ0 := Γ:

Γ=+1 :=

{

Γ=, i= if ⊬ [Γ=, i= | Δ]

Γ= if ⊢ [Γ=, i= | Δ]

where the seemingly classical case distinction is captured
constructively by the proposition characterisingmembership
in Γ=+1. We then set Γ′ :=

⋃

=:N Γ= , and �rst observe Γ′ ⊇ Γ

by construction. Before turning to the remaining properties
one-by-one, note that ⊬ [Γ′ | Δ] is preserved inductively.

• For deductive closure, assume that Γ′ ⊢ i . This entails
that when i is considered at = in the enumeration of
formulae, then it must be added to Γ=+1: indeed, we
can prove that ⊬ [Γ=, i | Δ], as ⊢ [Γ=, i | Δ] implies
⊢ [Γ′ | Δ], a contradiction, via compositionality as we
have that Γ′ ⊢ k for all k ∈ Γ=, i (via the rule (El) or
via assumption).

• Stability of Γ, assuming ¬¬(i ∈ Γ
′), is established

by looking at the consideration of the step = in the
enumeration when the formula i is scrutinised. We
prove that i ∈ Γ=+1 by showing that ⊬ [Γ=, i | Δ].
We do so by assuming ⊢ [Γ=, i | Δ] and showing ⊥,
which we obtain using ¬¬(i ∈ Γ

′) and a proof of
¬(i ∈ Γ

′). Then, similarly to the case of deductive
closure, we can obtain a contradiction by showing that
the assumptioni ∈ Γ

′ we extract and ⊢ [Γ=, i | Δ] lead
to a contradiction as they together entail ⊢ [Γ′ | Δ].

• For quasi-primeness, we assume that i ¤∨k ∈ Γ
′ and

¬(i ∈ Γ
′∨k ∈ Γ

′) to show⊥. As our goal is⊥, we can
make case distinctions on whether j ∈ Γ

′ or j ∉ Γ
′

for j ∈ {i,k }. Clearly, in the case where we have
i ∈ Γ

′ or k ∈ Γ
′, we get a contradiction with ¬(i ∈

Γ
′ ∨k ∈ Γ

′). So, we are left to consider the case where
i ∉ Γ

′ andk ∉ Γ
′. From these assumptions, we obtain

that ¬¬(⊢ [Γ′, i | Δ]) and ¬¬(⊢ [Γ′,k | Δ]), which
entail ⊢ [Γ′, i | Δ] and ⊢ [Γ′,k | Δ] given the negative
goal. Obviously, combined with i ¤∨k ∈ Γ

′ the two last
statements entail the contradiction ⊢ [Γ′ | Δ]: they
give Γ′, i ⊢ ¤∨Δ0 and Γ

′,k ⊢ ¤∨Δ1 where Δ0,Δ1 ⊆5 Δ,

which give Γ′ ⊢ i ¤→ ¤∨Δ0 and Γ
′ ⊢ k ¤→ ¤∨Δ1 through

the deduction theorem ; using i ¤∨k ∈ Γ
′ we get Γ′ ⊢

i ¤∨k ; all results together give us Γ′ ⊢ ¤∨(Δ0++Δ1) and
thus ⊢ [Γ′ | Δ] by de�nition.

□

Next, byN2 we refer to the canonical model constructed as
in De�nition 3.9, but now formed over the consistent (i.e. Γ ⊬
¤⊥), deductively closed, stable, and prime contexts Γ ordered
by inclusion, in contrast with the relatively consistent and
complete pairs ofM2 . The relation and interpretation ofN2

are thus obtained from restricting those ofM2 to contexts.
The realisation that one can shift from pairs to contexts in
the canonical model, absent from Shillito’s work, was made
through a careful analysis of the Lindenbaum lemma 3.11:
there, the extended pair is constructed by extending solely
the left context, and in the last step taking its complement
as the right context.

First note that deductive closure in particular implies that
N2 satis�es the critical axioms �11, �13, and �14, so N2 is
a BIH-model and thus usable for completeness statements
even when restricting to that class. Moreover, the require-
ment of primeness is strictly necessary, since it exactly states
the disjunction case of the truth lemma for N2 . In light
of the mismatch of the Lindenbaum lemma only yielding
quasi-prime extensions, we therefore need to make addi-
tional assumptions. In a �rst approximation, we use WLEM
to completely bridge the gap.

Lemma 4.8. Assuming WLEM, every stable, quasi-prime con-

text is prime (Ï). In consequence, the left context of every

relative consistent pair [Γ | Δ] extends into a world ofN2 and

the truth lemma for N2 can be proven (Ï).

Proof. Let Γ be stable and quasi-prime. To show primeness,
we suppose i ¤∨k ∈ Γ and need to derive i ∈ Γ or k ∈ Γ.
We use WLEM to decide whether i ∉ Γ or ¬(i ∉ Γ). In the
latter case, we immediately have i ∈ Γ by stability. In the
former case, we showk ∈ Γ so by stability we may assume
k ∉ Γ to derive a contradiction. This contradiction follows
from quasi-primeness yielding ¬¬(i ∈ Γ ∨k ∈ Γ) while we
have both i ∉ Γ andk ∉ Γ.
To provide some intuition, the truth lemma forN2 stating

i ∈ Γ ↔ N2 , Γ ⊩ i

is proven by induction on the formula as in the fully classical
proof and we only describe the crucial localisation of classi-
cal reasoning in the Lindenbaum extension and to establish
goals of the form i ∈ Γ andk ∉ Γ via proof by contradiction.
The former, needed in the cases of implication (backwards)
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and exclusion (forwards), actually poses no problem by the
previous observation that WLEM is enough to extend con-
sistent pairs into pairs whose left contexts are worlds. The
latter, needed for the backwards direction of both implica-
tion and exclusion, can be replaced by stability of Γ and its
complement. □

Note that in this setting the truth lemma could be estab-
lished even for the traditional (existential) interpretation
of ¤ since there are no restrictions in which context the
Lindenbaum extension is applicable.

By the previous lemma, using WLEM the canonical model
N2 can serve as a witness for model existence and in fact
WLEM turns out to be necessary for that property in general.

Theorem 4.9. (Ï) Model existence is equivalent to WLEM.

Proof. In order to derivemodel existence fromWLEM,we use
Lemma 4.8 to extend the left context of a relative consistent
pair [Γ | i] into a world Γ

′ of N2 . By the truth lemma and
Γ ⊆ Γ

′, we directly have N2 , Γ′ ⊩ Γ. Moreover, we have
N2 , Γ′ ⊮ i since assuming N2 , Γ′ ⊩ i yields i ∈ Γ

′, which
is in contradiction to the relative consistency of [Γ′ | i]. So
N2 at world Γ

′ is a model separating Γ from i .
For the converse, we assume a proposition % we want to

show WLEM for. For a �xed propositional variable ? , we set

Γ := {? ¤∨ ¤¬?} ∪ {? : %} ∪ { ¤¬? : ¬%}

and �rst establish that Γ is consistent.
Since consistency is a negative property, for that interme-

diate claim we may actually assume % ∨¬% . This assumption
allows us to show that the trivial modelMC already used for
Theorem 4.3 is classical and satis�es Γ, so we can rule out
Γ ⊢ ¤⊥ using soundness for de�nite models (Lemma 4.1).

Now model existence can be applied, yielding a model M
and worldF withM,F ⊩ Γ. But then in particularM,F ⊩

? ¤∨ ¤¬? meaning the model is forced to make a decision, so
actually eitherM,F ⊩ ? orM,F ⊩ ¤¬? . In the former case
we can show ¬¬% , since assuming ¬% would mean ¤¬? ∈ Γ

in contradiction toM,F ⊩ ? . In the latter case, we similarly
show ¬% , thus altogether establishing WLEM for % . □

Complementing with a �ner approximation, we next show
that WLEMS, although not enough to fully bridge the gap
from quasi-primeness to primeness, is enough to establish
the truth lemma forN2 . This time, the truth lemma crucially
relies on the weakened (negated) interpretation of ¤ since
the Lindenbaum extension only applies in negative goals.

Lemma 4.10. Assuming WLEMS, every stable, quasi-prime

context is not not prime (Ï). In consequence, the left context

of every relative consistent pair [Γ | Δ] does not not extend
into a world of N2 while the truth lemma for N2 can still be

proven (Ï).

Proof. Let Γ be stable and quasi-prime. Suppose for a con-
tradiction that additionally Γ were not prime. Given the

negative goal, using WLEMS we may assume that for all i
we have i ∉ Γ or ¬(i ∉ Γ). By the same argument as in
Lemma 4.8 this assumption is enough to derive primeness,
then contradicting the assumption that Γ was not prime.

Regarding the truth lemma, we exploit that the two usages
of the Lindenbaum extension happen for a negative goal, so
the double negation shielding the extensions can be elimi-
nated: First, in the backwards direction for implication, we as-
sumeN2 , Γ ⊩ i ¤→k and need to show i ¤→k ∈ Γ, which by
stability can be turned into the negative goal ¬(i ¤→k ∉ Γ).
Secondly, in the forwards direction for exclusion, we assume
i ¤ k ∈ Γ and need to show N2 , Γ ⊩ i ¤ k , which is a
negative goal by our choice of semantics. □

While there is no hope to establish model existence only
using WLEMS, we could show that N2 is not not a model
for every consistent context. More naturally, however, we
show that with the help of WLEMS and N2 the property of
quasi-completeness can be established and, as in the case of
model existence, that this logical characterisation is sharp.

Theorem 4.11. (Ï) Quasi-completeness is equivalent to

WLEMS.

Proof. In order to derive quasi-completeness from WLEMS,
we use Lemma 4.10 to extend the left context of a relative
consistent pair [Γ | i] with Γ |= i into a world Γ

′ of N2 .
Note that this extension is possible since we ultimately want
to derive a contradiction, so the shielding double negation
of the obtained world can be eliminated. But then the truth
lemma yields N2 , Γ′ ⊩ Γ and N2 , Γ′ ⊮ i as in Theorem 4.9,
together in contradiction to Γ |= i .
For the converse, we assume a predicate % : N → P we

want to show WLEMS for. We this time consider the context

Γ := {?= ¤∨ ¤¬?= : = ∈ N} ∪ {?= : % =} ∪ { ¤¬?= : ¬% =}

and again �rst establish that Γ is consistent.
In principle, the idea is to use a model that interprets

?= with % = to show consistency via soundness, however
this model cannot be shown de�nite as this would involve
in�nitelymany case distinctions and even facing the negative
goal we can only do �nitely many of them. So instead we
exploit that a derivation Γ ⊢ ¤⊥ only involves �nitely many
assumptions Γ′ ⊆5 Γ and construct a model ignoring all
unused variables (i.e. interpreting them trivially). This model
then can be shown de�nite by only �nitely many classical
case distinctions, so it witnesses Γ ⊬ ¤⊥ via soundness for
de�nite models (Lemma 4.1).
To �nally derive WLEMS, we assume ¬(∀=.¬% =∨¬¬% =)

and apply quasi-completeness such that using the previously
established consistency Γ ⊬ ¤⊥, only Γ |= ¤⊥ remains to be
shown. Thus it is enough to assume a modelM and world
F withM,F ⊩ Γ and show that actually ∀=.¬% = ∨ ¬¬% =

which then works exactly as in Theorem 4.9 by analysing the
decisionsM,F ⊩ ?= ¤∨ ¤¬?= the model is forced to make. □
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We emphasise that the necessity for classical assumptions
in the case of model existence and quasi-completeness solely
relies on the presence of ¤∨ in the syntax of BIL. So, in par-
ticular, if we were to consider BIL without ¤∨ or to interpret
M,F ⊩ i ¤∨k classically by ¬(M,F ⊮ i∧M,F ⊮ k ), we ex-
pect model existence and quasi-completeness hold construc-
tively, while in the latter case soundness will instead become
even less constructive. Also, in any of these modi�cations
actual completeness still fails short of being constructive
due to the strong interpretation of ¤⊥. We will illustrate in
the next section that the contribution of ¤⊥ however changes
with the complexity of the context.

4.3 Completeness for Semi-decidable Contexts

We end this section with a preliminary analysis of complete-
ness restricted to semi-decidable contexts. In this particular
case, not the full strength of LEM is necessary, since the
remaining double negation from quasi-completeness to com-
pleteness can be eliminated only using MP. However, while
we also conversely obtain MP from completeness, we only
obtain versions of WLEM and WLEMS restricted to semi-
decidable propositions and predicates from the intermediate
formulations of completeness. The corresponding proofs fol-
low mostly the outline from before, so we provide only the
high-level ideas and refer to the accompanying Coq code for
full detail.
The idea to derive restricted versions of the principles

WLEM and WLEMS is basically as before, i.e. to exploit suit-
able contexts that can be shown consistent constructively
but where an actual model would provide some additional
non-constructive information. A �rst attempt could be to just
exactly considerWLEM andWLEMS for semi-decidable pred-
icates, but this fails since the contexts used in Theorem 4.9
and Theorem 4.11 refer to the complement of the assumed
predicate and therefore need not be semi-decidable. There-
fore, we �rst give reformulations of WLEM andWLEMS that
instead of the complement refer to a second predicate:

DM := ∀%&.¬(% ∧&) → ¬% ∨ ¬&

DDNS := ∀%&. (∀=.¬(% = ∧& =)) → ¬¬(∀=.¬% = ∨ ¬& =)

DM expresses a version of the de Morgan law and DDNS
can be seen as an instance of double negation shift for dis-
junctions since¬(% =∧& =) is equivalent to¬¬(¬% =∨¬& =).

Lemma 4.12. WLEM is equivalent to DM and WLEMS is

equivalent to DDNS.

Proof. Both are by simple constructive reasoning. For the
�rst direction, one uses WLEM / WLEMS for both % and
& . For the converse direction, one instantiates & with the
complement of % . □

The given reformulations of WLEM and WLEMS can now
be more symmetrically restricted to semi-decidable predi-
cates, to which we refer by S-DM and S-DDNS, respectively.

Then their contribution to the completeness statements can
be summarised as follows.

Theorem4.13. Restricted to semi-decidable contexts, we have:

1. WLEMS together with MP implies completeness (Ï),

2. Model existence implies S-DM,

3. Quasi-completeness implies S-DDNS,

4. Completeness implies S-DDNS and MP.

Proof. We prove the four statements one by one.

1. By Theorem 4.11, WLEMS implies quasi-completeness,
so from Γ |= i we get to ¬(Γ ⊬ i). Since for semi-
decidable Γ the set of derivable formulae {i : Γ ⊢ i}

is semi-decidable, and MP implies that semi-decidable
predicates are stable (Lemma 2.3), from ¬(Γ ⊬ i) we
obtain Γ ⊢ i and thus conclude completeness.

2. We assume model existence and two semi-decidable
propositions % and& with¬(%∧&). To obtain¬%∨¬&
by model existence we use the semi-decidable context

Γ := {? ¤∨ ¤¬?} ∪ {? : %} ∪ { ¤¬? : &}

and from there proceed exactly as in Theorem 4.9.
3. We assume quasi-completeness and two semi-decidable

predicates %,& : N→ P with ∀=.¬(% = ∧& =). To ob-
tain ¬¬(∀=.¬% = ∨ ¬& =) by quasi-completeness we
use the semi-decidable context

Γ := {?= ¤∨ ¤¬?= : = ∈ N} ∪ {?= : % =} ∪ { ¤¬?= : & =}

and from there proceed exactly as in Theorem 4.11.
4. Since completeness implies quasi-completeness, it im-

plies S-DDNS given the previous claim. Moreover, MP
is obtained by Lemma 4.5 since MP exactly states sta-
bility for the class of semi-decidable propositions. □

It seems unlikely that S-DM and S-DDNS conversely suf-
�ce to establish model existence and quasi-completeness,
respectively, since the Lindenbaum extension does not main-
tain semi-decidability as is, so we cannot simply form a uni-
versal model over semi-decidable contexts. However, such
a universal model would be needed to obtain these inter-
mediate formulations of completeness only using the semi-
decidable versions of their characterising principles. We
leave it for future investigations to determine if an alter-
native strategy can be found that would induce an exact
equivalence of semi-decidable completeness with the con-
junction of S-DDNS andMP, or if instead a stronger principle
can be identi�ed that turns out to be su�cient and necessary.

We further remark that the reverse directions of the above
theorem are not at all speci�c to semi-decidable contexts but
apply to arbitrary classes and the correspondingly restricted
logical principles: If C : P → P contains at least ⊤, then
for C-contexts we have that model existence implies C-DM,
that quasi-completeness implies C-DDNS, and that complete-
ness implies C-DNE. So in particular there is the even more
general open question how much logical strength between
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WLEM and C-DM or WLEMS and C-DDNS is needed to
characterise model-existence or quasi-completeness of C-
contexts, respectively.

5 Discussion

In this paper, we led a constructive reverse mathematics
investigation in the interactive theorem prover Coq: we
showed the interactions between non-constructive princi-
ples, soundness and completeness-like results. For an al-
ternative formulation of the Kripke semantics for BIL, we
showed the following equivalences: soundness and LEM,
completeness and LEM, model existence and WLEM, quasi-
completeness and WLEMS. In addition to that, we approxi-
mated the logical strength of these results when restricted to
semi-decidable contexts by giving them bounds using further
non-constructive principles such as MP, S-DM or S-DDNS.

5.1 Coq Development

In our Coq mechanisation we mostly use standard tech-
niques for the representation of the logic, namely an in-
ductive type for the syntax, an inductive predicate for the
deduction system, and a recursive evaluation function for
the semantics. The enumerability / semi-decidability of the
syntax and deduction system needed for the Lindenbaum
lemma and the discussion concerning Markov’s principle,
respectively, is established using the technique of cumulative
list enumeration [7]. For the discreteness of the syntax we
employ the decide equality tactic and in�nite contexts are
represented using the Ensembles library. The structure of
Kripke models is registered as a type class to enable implicit
inference in a semantic argument as usual in mathematical
practice.
Using Coq in our investigation proved useful for several

reasons. First, the gap-free mechanisation complements the
previous proofs by Goré and Shillito [9] revisiting Rauszer’s
work [41]with a fully formal correctness certi�cate. It thereby
also lays the foundation for follow-up research extending to
�rst-order bi-intuitionistic logic, whereof Rauszer’s original
completeness result was found to be erroneous. Secondly, the
proof assistant actually assisted in working out the reverse
mathematical results, especially concerning the choice of
semantics, and with simpli�cations of proofs. Keeping track
of the �ne intuitionistic logical distinctions and where they
come to play a role can be fully delegated to Coq, especially
when later changing an initial de�nition and reworking the
whole argument. Similarly, only in interaction with Coq we
found the simpli�cation of the universal model and Linden-
baum lemma, referring to single contexts rather than pairs –
changing the proofs then simply involved editing the critical
places pointed out by the system. Thirdly, Coq’s underlying
constructive type theory is an ideal framework for a reverse

analysis since it is precise enough to distinguish much logi-
cal structure and expressive enough to model the involved
notions in a natural way.
In principle, the formal metatheory of a logic like BIL

can be developed in other proof assistants, at least concern-
ing the standard treatment of properties like soundness and
completeness. However, our particular interest in the con-
structive content of these proofs rules out proof assistants
with hard-wired classical logic, like Isabelle/HOL and other
member of the HOL family, and those with standard libraries
depending on classical logic, like Lean. Moreover, the simul-
taneous synthetic treatment of computable functions and
investigation of non-constructive logical principles is impos-
sible in systems that validate unique choice, therefore ruling
out Agda and implementations of HoTT. Consequently, while
we do not inherently rely on the impredicativity of Coq’s P
universe, its disconnection from the computational type uni-
verses is the crucial and unique feature enabling our formal
investigation.

5.2 Related Work

Mechanisation of completeness proofs. There is a rather
long list of works mechanising completeness proofs which
for themost prominent case of �rst-order logic is summarised
in [8] and [19]. Regarding formalisms like bi-intuitionistic
logic with a modal aspect, we are aware of the works in Coq
of Doczkal and Smolka on CTL [5], Doczkal and Bard on con-
verse PDL [4], and Hagemeier and Kirst on IEL [11], the work
in HOL Light of Maggesi and Perini Brogi on the provability
logic GL [28]. We �nally mention the recent formalisation in
Lean of Guo, Chen and Bentzen on propositional intuitionis-
tic logic [10].

Constructive reverse analysis of completeness. Well-
known results regarding the reverse analysis of completeness
of �rst-order logic have been observed by Kreisel [26] con-
cerning Markov’s principle, by Henkin [13] concerning the
boolean prime ideal theorem, by Simpson [45] concerning
weak König’s lemma, and by Krivtsov [27] concerning the
weak fan theorem. The new observations involving WLEM
and WLEMS have been discovered by Kirst [19] in an exten-
sion of the work with Hagemeier on IEL [11], and applied to
�rst-order logic by Herbelin and Kirst [15].

Logic formalisation using synthetic computability.

The synthetic approach [1] to represent semi-decidability
employed in Section 4.3, i.e. to use type-theoretic functions
instead of a formal model of computation, has �rst been ap-
plied to the investigation of �rst-order logic in [7]. The same
approach has then been applied to formalise and mechanise
undecidability [17, 20, 22], incompleteness [23], and Ten-
nenbaum’s theorem[16], which together with other results
was merged into a collaboratively developed Coq library of
�rst-order logic [21].
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5.3 Future Work

There are four ways in which we intend to extend this work.
First, we aim at completing the picture for semi-decidable
contexts by obtaining equivalences where we currently have
lower and upper bounds. Such a completion should be ob-
tained for general C-contexts as well. Secondly, we would
like to obtain a similar analysis to the one in this paper,
but for the traditional semantics involving existential quan-
ti�cation instead of negated universal quanti�cation. We
suspect that the equivalences in this context involve di�er-
ent non-constructive principles than the ones we obtained
here. Third, we intend to use the insights in this paper to
build the �rst correct and formalised proof of completeness
for �rst-order bi-intuitionistic logic, and proceed to a con-
structive reverse mathematics analysis of this result. Fourth,
we plan on writing a paper summarising the equivalences
with completeness obtained for general classes of logics.
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