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Abstract

We discuss our ongoing formalisation of the Kleene-Post theorem ([6], establishing
incomparable Turing degrees) and Post’s theorem ([9], connecting the arithmetic hierarchy
with Turing degrees) using synthetic computability theory in constructive type theory.

Synthetic Oracle Machines We briefly outline the synthetic rendering of oracle machines
as described in a related abstract [4], adjusting [2], based on a similar proposal by Bauer [1]. The
main idea is that an oracle machine R can be represented as a function operating on functional
relations A : N⇝⇀ B relating (some) natural numbers n : N to (unique) boolean values b : B:

R : (N⇝⇀ B) → N⇝⇀ B
The input relation acts as oracle that can be accessed to describe the returned relation.

To ensure that this description is effective, we require R to return computable output for
computable input, captured as partial functions f : N ⇀ B, by imposing a computational core

r : (N ⇀ B) → N ⇀ B with ∀f.R f = r f.

Note that here and in the remainder of this text we freely identify partial functions f : N ⇀ B
with their (functional) graphs λnb. fn = b, reusing the equality symbol for evaluation of f . To
further rule out exotic behaviour, we require R to be continuous in the following sense:

∀(A : N⇝⇀ B).∀(n : N).∀(b : B). RAn b → ∃(L : N∗). L ⊆ dom(A) ∧ ∀A′. A′ =L A → RA′ n b

Continuity in this sense expresses that from any terminating run RAn b one can extract a
list L of queries to which the oracle A replied, such that RA′ n terminates for all oracles A′

agreeing with A on L with the same value b. Observed externally, by all these restrictions and
according to the classical, syntactic definition we narrow down the amount of oracle machines
to countable extent. In fact, we make this limitation available internally by assuming an
enumeration rn of all computational cores. We currently investigate for which formulations a
variant of Church’s thesis [7, 10, 11, 3] is enough to obtain such an enumerator.

Given A,B :N→P, we call R a Turing reduction from A to B if RB = A (reinterpreting
predicates as functional relations) and write A ⪯T B if a Turing reduction from A to B exists.
We assume extensionality of functions and relations.

Kleene-Post Theorem To establish incomparable Turing degrees, we adapt the proof given
in Odifreddi’s textbook [8] to our synthetic setting. The usual strategy is to obtain them as the
unions A :=

⋃
n:N σn and B :=

⋃
n:N τn of cumulative increasing sequences σn and τn of boolean

strings such that the former take care that no rn induces a reduction B ⪯T A and the latter
conversely rule out A ⪯T B. Naturally, in our synthetic setting we are not able to define these
sequences as computable functions N → B∗, as this would force A and B decidable. Instead, we
characterise both sequences simultaneously with an inductive predicate ▷ : N → B∗ → B∗ → P
such that n ▷ (σ, τ) represents σn as σ and τn as τ , by adding to 0 ▷ (ϵ, ϵ) the rules:

2n ▷ (σ, τ) σ′ ≥ σ b = rn σ
′ |τ |

2n+ 1 ▷ (σ′, τ ++[¬b])
E1

2n ▷ (σ, τ) ¬(∃σ′b. σ′ ≥ σ ∧ b = rn σ
′ |τ |)

2n+ 1 ▷ (σ, τ ++[0])
E2

2n+ 1 ▷ (σ, τ) τ ′ ≥ τ b = rn τ
′ |σ|

2n+ 2 ▷ (σ++[¬b], τ ′)
O1

2n+ 1 ▷ (σ, τ) ¬(∃τ ′b. τ ′ ≥ τ ∧ b = rn τ
′ |σ|)

2n+ 2 ▷ (σ++[0], τ)
O2
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In every even step with 2n ▷ (σ, τ) the sequences are extended such that rn applied to any
prefix of A differs from any prefix of B at position |τ |, either by flipping the result if rn already
converges on some extension σ′ ≥ σ (E1) or by setting a dummy value if rn diverges on all
extensions (E2). Dually, in every odd step with 2n+ 1 ▷ (σ′, τ ′) it is taken care that re applied
to any prefix of B differs from any prefix of A.

We state the central lemma used to show B ̸⪯T A, a dual version yields A ̸⪯T B.

Lemma 1. Let R be an oracle machine factoring through the computational core rn. If further
given 2n ▷ (σ, τ) and 2n+ 1 ▷ (σ′, τ ′), then B |τ | b implies ¬(RA |τ | b).
Theorem 1 (Kleene-Post). There are predicates A, B such that neither A ⪯T B nor B ⪯T A.

Proof. Suppose that B ⪯T A, so RA = B for some oracle machine R with core rn. Given
that we try to derive a contradiction, we can argue classically enough to obtain 2n ▷ (σ, τ),
2n+1▷(σ′, τ ′), andB |τ | b. Then by Lemma 1 we obtain ¬(RA |τ | b), contradictingRA = B.

Post’s Theorem To connect the arithmetical hierarchy with the structure of Turing degrees,
we again follow a usual textbook presentation translated to constructive type theory. To be
able to state the theorem in our setting, we render all involved notions synthetically.

First, we represent the arithmetical hierarchy with a mutually inductive predicate:

f : Nk → B
Σk

0(λn⃗. f n⃗ = true)

f : Nk → B
Πk

0(λn⃗. f n⃗ = true)

Πk+1
n p

Σk
n+1(λn⃗. ∃x. p (x :: n⃗))

Σk+1
n p

Πk
n+1(λn⃗. ∀x. p (x :: n⃗))

The first two rules assert that k-ary decidable predicates form the base of the hierarchy. The
third rule states that for a Πn predicate p of arity k+1 the k-ary predicate obtained by capturing
the first variable of p by an existential quantifier is Σn+1. The fourth rule dually expresses how
a Σn predicate is turned into Πn+1 with a universal quantifier. As a sanity check, using a form
of Church’s thesis for a concrete model of computation, we can show the equivalence of our
synthetic characterisation of the arithmetic hierarchy with a more conventional definition using
first-order fomulas in the language of arithmetic, as mechanised in [5].

Secondly, we define the Turing jump A′ of a predicate A using the core enumeration rn:

A′ := λn. ∃R. (∀f.R f = rn f) ∧RAn true

This definition expresses the self-halting problem for oracle machines as it contains exactly
those numbers n such that the n-th oracle machine R (as characterised by rn) used with an
oracle for A accepts n. We denote the n-th Turing jump of the empty predicate by ∅(n).

Finally, we say that A is semi-decidable relative to B if there is an oracle machine R with

∀n.An ↔ RB n true.

The hardest part of Post’s theorem is to show that RA is Σ1 relative to A by showing:

Lemma 2. Given an oracle machine R with core r, termination RAn b is equivalent to

∃LtrueLfalse. (∀n ∈ Ltrue. A b true) ∧ (∀n ∈ Lfalse. A b false) ∧ r (lookupLtrue Lfalse)n = b

where lookupLtrue Lfalse n returns true if n ∈ Ltrue, false if n ∈ Lfalse, and diverges otherwise.

We conclude Post’s theorem in a common formulation, employing our synthetic definitions.

Theorem 2 (Post). Assuming LEM (∀p. p ∨ ¬p), the following can be shown:

• A unary predicate A is Σn+1 iff it is semi-decidable relative to ∅(n).

• If A is Σn, then A ⪯T ∅(n). If n > 0 already A ⪯m ∅(n) for synthetic many-one reductions.

In our current mechanisation, we assume LEM to allow switching between Σn and Πn by
complementation. We currently investigate how this assumption can be weakened or eliminated.
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