
Higher-Order Logic

Lecture Notes

July 19, 2007

Gert Smolka

Department of Computer Science

Saarland University

Copyright © 2007 by Gert Smolka, All Rights Reserved

1

Contents

1 The Language of Higher-Order Logic 4

1.1 Functions . 4

1.2 Boolean Connectives . 5

1.3 Quantification . 6

1.4 Identities . 7

1.5 Sets as Functions . 8

1.6 Intensional and Extensional Interpretation 8

1.7 Types and Terms . 9

1.8 Notational Conventions . 11

2 Terms and Types 13

2.1 Untyped Terms . 13

2.2 Axiomatization . 15

2.3 Basic Properties . 19

2.4 Reduction . 20

2.5 Subterms . 21

2.6 Recursive Definitions and the Canonical Name Convention 22

2.7 Construction of a Term Structure . 23

2.8 Typed Terms . 25

2.9 Well-typed Terms . 26

2.10 Preterms . 28

3 Specifications and Models 30

3.1 Motivating Example: Groups . 30

3.2 Interpretations and Evaluations . 31

3.3 Semantic Equivalence and Correctness of the β- and η-Law 33

3.4 Formulas and Specifications . 34

3.5 Boolean Algebras . 36

3.6 Specification of Logical Operations . 38

3.7 Specification of the Natural Numbers 40

3.8 Properties of Terms and Specifications 42

4 Deduction 44

4.1 Entailment Relations . 44

4.2 Proof Systems . 46

4.3 Replacing Equals with Equals . 47

4.4 Basic Proof System and Deductive Entailment 49

4.5 Subsumed Deduction Rules . 49

4.6 Conversion . 52

© G. Smolka 2 2007/7/19

5 Propositional Logic 54

5.1 Specification PL . 54

5.2 Tautological Completeness . 57

5.3 BCA Equivalents . 61

5.4 Hypothetical Conversion Proofs . 62

5.5 Case Analysis . 65

6 Higher-Order Propositional Completeness 67

6.1 Denotational Completeness . 67

6.2 Definitional Extensions . 69

6.3 Deductive Completeness . 70

6.4 Higher-Order Identities . 75

7 Identities and Quantifiers 76

7.1 Specification HL . 76

7.2 Quasi-Conversion . 78

7.3 Quantifier Laws . 79

7.4 Correctness of Henkin’s Reduction . 82

7.5 Backward Proofs . 83

7.6 Turing’s Law and Cantor’s Law . 85

7.7 Quantified Replacement . 86

7.8 Choice and Skolem . 86

8 Tableaux 89

8.1 Hybrid Tableaux . 89

8.2 Hybrid Tableau Proofs . 92

8.3 First-order Tableaux . 94

9 Prime Trees and BDDs 96

9.1 Prime Trees . 96

9.2 Algorithms . 99

9.3 BDDs . 101

10 First-Order Propositional Completeness 104

10.1 BC and BC’ . 104

10.2 Expansion and Completeness . 107

© G. Smolka 3 2007/7/19

1 The Language of Higher-Order Logic

In this section, we review basic logical notions such as functions, Boolean connec-

tives, quantification and equality. We do this so that we can sketch the language

of higher-order logic, a simple yet amazingly expressive language for mathemat-

ical statements.

We assume that you have some experience with mathematical language and

argumentation. In particular, you should be familiar with numbers and sets. If

you know a functional programming language (e.g., ML or Haskell) you already

have seen some of the key ideas of higher-order logic.

1.1 Functions

Functions will play a major role in our language. Everyone knows that a function

is something that takes an argument and yields a result. Nowadays, functions

are defined as sets of pairs. We will use the following definition.

Let X and Y be sets. A function X → Y is a set f ⊆ X × Y such that

1. ∀x ∈ X ∃y ∈ Y : (x,y) ∈ f

2. (x,y) ∈ f ∧ (x,y′) ∈ f =⇒ y = y′

We use X → Y to denote the set of all functions X → Y . If f ∈ X → Y and x ∈ X,

then we write fx for the unique y such that (x,y) ∈ f . We write fx + 5 for

(fx) + 5.

The canonical means for describing functions is the lambda notation devel-

oped by the American logician Alonzo Church around 1930. Here is an example:

λx∈Z. x2

This notation describes the function Z → Z that squares its argument (i.e.,

yields x2 for x). The following equation holds:

(λx∈Z. x2) = { (x, x2) | x ∈ Z }

It shows the analogy between lambda notation and the usual notation for sets.

Lambda notation makes it easy to describe cascaded functions, i.e., functions

that return functions as results. As example, consider the definition

plus := λx∈Z. λy∈Z. x +y

which binds the name plus to a function of type Z → (Z → Z). When we apply

plus to an argument a, we obtain a function Z → Z. When we apply this function

to an argument b, we get a+ b as result. With symbols:

(plusa)b = (λy∈Z. a+ y)b = a+ b

© G. Smolka 4 2007/7/19

We say that plus is a cascaded representation of the addition operation for in-

tegers. Cascaded representations are often called Curried representations, after

the logician Haskell Curry. They first appeared 1924 in a paper by Moses Schön-

finkel on the primitives of mathematical language. In traditional mathematics,

one typically uses cartesian representations of binary operations. The type of

the cartesian representation of integer addition would be Z × Z → Z. We prefer

to work with the cascaded representation because it represents operations with

multiple arguments just with functions. In contrast, the cartesian representation

requires pairs in addition to functions.

For convenience, we omit parentheses as follows:

fxy ⇝ (fx)y

X → Y → Z ⇝ X → (Y → Z)

Using this convenience, we can write plus 3 7 = 10 and plus ∈ Z → Z→ Z.

We mention two laws that hold for the lambda notation:

λx∈X. fx = f η-law

(λx∈X. e)e′ = [x := e′]e β-law

In the β-law, e and e′ are expressions and [x := e′]e stands for the expression

that is obtained from e by replacing the occurrences of the variable x with the

expression e′. Here is an instance of the β-law:

(λx∈N. x2)(3+y) = (3+y)2

1.2 Boolean Connectives

Mathematical statements often employ Boolean connectives such as conjunction

and implication. We use the numbers 0 and 1 as Boolean values, where 0 may

be thought of as “false” and 1 as “true”. We define

B := {0,1}

As in programming languages, we adopt the convention that expressions like

3 ≤ x yield a Boolean value. This explains the following equations:

(3 < 7) = 1

(7 ≤ 3) = 0

(3 = 7) = 0

The Boolean connectives are defined as follows:

¬x = 1− x Negation

© G. Smolka 5 2007/7/19

x ∧y =min{x,y} Conjunction

x ∨y =max{x,y} Disjunction

x ⇒ y = ¬x ∨y Implication

x⇔ y = (x = y) Equivalence

We can represent negation as a function B → B and the binary Boolean connec-

tives as functions B → B → B. We use the symbols ¬, ∧, ∨, ⇒, and ⇔ to name

these functions, and we refer to them as Boolean operations. There are many

interesting laws for the Boolean operations:

¬(x ∧ y) = ¬x ∨¬y

x ∧ (x ∨ y) = x

x ∨y = (x ⇒ y) ⇒ y

¬(¬x) = x

We can prove these laws by exhaustive case analysis, i.e., by verifying them for

all possible values of x and y . This yields 4 cases:

1. x = 0 and y = 0

2. x = 0 and y = 1

3. x = 1 and y = 0

4. x = 1 and y = 1

There are smarter ways to decide the validity of Boolean equations. We will say

more about this later.

1.3 Quantification

Mathematical statements often involve quantification, for instance

∀x ∈ Z ∃y ∈ Z : x +y = 0

Church realized that the quantifiers ∀ and ∃ can be represented as functions

and that quantification can be represented as the application of a quantifier to

a function described with the lambda notation. We can say that Church did for

the quantifiers what Boole did for the Boolean connectives, i.e., reduce them to

simple functions.

Let X be a set. We define the quantifiers ∀X and ∃X as follows:

∀X ∈ (X → B)→ B universal quantifier

∀Xf = (f = (λx∈X.1))

© G. Smolka 6 2007/7/19

∃X ∈ (X → B)→ B existential quantifier

∃Xf = (f ≠ (λx∈X.0))

The statement ∃y ∈ Z : x +y = 0 can now be represented as follows:

∃Z (λy∈Z. x +y = 0)

The usual notation for quantification can in fact be obtained as notation:

∀x∈X : e := ∀X (λx∈X.e)

∃x∈X : e := ∃X (λx∈X.e)

There are many interesting laws for quantifiers:

¬(∀x∈X : e) = (∃x∈X : ¬e)

(∀x∈X : e∧ e′) = (∀x∈X : e)∧ (∀x∈X : e′)

(∀x∈X : y) = y

1.4 Identities

You cannot do mathematics without using equality. For each set X, equality for

the members of X can be represented by the following function:

≐X ∈ X → X → B

x ≐X y = (x = y)

We refer to ≐X as the identity predicate for X, or shorter as the identity for X.

With the identity ≐Z we are able to represent the equation x = y as an expression

x ≐Z y that applies the function ≐Z : Z → Z→ B to x and y .

There are lots of interesting laws for identities. Everyone knows the following:

(x ≐X x) = 1 Reflexivity

(x ≐X y) = (y ≐X x) Symmetry

(x ≐X y ∧y ≐X z ⇒ x ≐X z) = 1 Transitivity

A very interesting law is the Leibniz law:

(x ≐X y) = (∀f∈X → B : fx ⇒ fy) Leibniz

It says that the identities can be expressed with the universal quantifiers and

implication. It can be paraphrased as saying that two objects x and y are equal

if y satisfies every property x satisfies. Let’s look at a proof of Leibniz’ law.

© G. Smolka 7 2007/7/19

Proof Let x,y ∈ X. Case Analysis.

Let x = y . Then

(∀f∈X → B : fx ⇒ fy) = (∀f∈X → B : fx ⇒ fx)

= (∀f∈X → B : 1)

= 1

= (x ≐X y)

Let x ≠ y . Then there is a function g ∈ X → B such that gx = 1 and gy = 0.

Hence (gx ⇒ gy) = 0. Hence (∀f∈X → B : fx ⇒ fy) = 0 = (x ≐X y). �

Here are some more laws for the identities:

¬x = (x ≐B 0)

x ∧y = (∀f∈B→ B→ B : fxy ≐B f11)

(f ≐X→Y g) = (∀x∈X : fx ≐Y gx)

1.5 Sets as Functions

Let X be a set. The subsets of X can be expressed as functions X → B. We will

represent a subset A with the function λx∈X. x ∈ A that yields 1 for x ∈ X iff x

is an element of A. This function is called the characteristic function of A with

respect to X. Now we can obtain the usual set notations for subsets A,B ⊆ X as

follows:

x ∈ A := Ax

A∩ B := λx∈X. Ax ∧ Bx

A∪ B := λx∈X. Ax ∨ Bx

1.6 Intensional and Extensional Interpretation

Given the notation 2+ 3, we can interpret it in two ways. The intensional inter-

pretation sees it as an expression applying addition to 2 and 3. The extensional

interpretation sees it as the number 5. When we say that the equation 2+ 3 = 5

is valid, we use the extensional interpretation of 2+ 3. When we say that the ad-

dition of 2 and 3 yields 5, we use the intensional interpretation of 2+ 3. Due to

our mathematical training, we automatically choose the interpretation required

by a given context.

The intensional interpretation of a notation is called the intension of the no-

tation, and the extensional interpretation of a notation is called the extension of

© G. Smolka 8 2007/7/19

the notation. Things related to the intensions of notations are called syntactic,

and things related to the extensions of notations are called semantic.

Given a language, we distinguish between the concrete syntax (i.e., the no-

tation), the abstract syntax (i.e., the intensions), and the semantics (i.e., the

extensions). At the heart of every language is the abstract syntax.

1.7 Types and Terms

We now sketch the abstract syntax of the language of higher-order logic. It dis-

tinguishes between two kinds of objects, called types and terms. Types are the

intensions of notations like B and N → N → B. Terms are the intensions of

notations like 3+ 4, 2 < 5, and ∀x∈Z : x + 0 = x.

We assume that some primitive types, called sorts, and some primitive terms,

called names, are given. Typical examples of sorts are Z and B. Typical examples

of names are 1, +, ⇒, ∀T and ≐T .

A type is either a sort or a functional type. A functional type is a pair (S, T)

of two types. The usual notation for a functional type (S, T) is S → T . Often it

is helpful to think of types as trees. For instance, the type N → N → B can be

represented by the following tree:

→

N →

N B

We speak of the tree representation of a type.

Every name must come with a type. For instance, the type of 1 is B and the

type of ∀T is (T → B)→ B.

A term is either a name, an application or an abstraction. Every term has a

unique type.

An application is a pair (s, t) of two terms where s must have a functional

type S → T and t must have the type S. The usual notation for an application

(s, t) is st. We also use infix notation for applications. For instance, the notation

x +y describes the double application ((+x)y).

Every abstraction can be described with the notation λu∈T .t, where u is

some name, T is a type, and t is a term.

Terms that can be described without the use of lambda notation are called

combinatorial. For instance, x + 2·y and ∀B(¬) are combinatorial terms, but

∀N(λx∈N. x < 5) is not a combinatorial term.

Like types, terms have tree representations. The tree representation of the

term x + 3 is

© G. Smolka 9 2007/7/19

•

•

+ x

3

It shows explicitly how the term x+3 is obtained with two applications from the

names +, x and 3. As further example we show the tree representation of the

term x + 2 < y :

•

•

< •

•

+ x

2

y

Before we can show the tree representation of abstractions, we need to clarify

an important issue. It is clear that the notations λn∈N.n and λx∈N.x describe

the same function, that is

(λn∈N.n) = (λx∈N.x) = { (x, x) | x ∈ N }

In other words, it does not matter for the extensional interpretation what name

we use for the argument variable of a lambda notation. For reasons that will

become clear later, this should also be the case for the intensional interpretation

of the lambda notation. That is, λn∈N.n and λx∈N.x should describe the same

term. To account for this fact, the tree representation of an abstraction does

not represent argument references by names. Rather, argument references are

represented as natural numbers that identify the lambda node they refer to. For

instance, the tree representation of the term λn∈N.n is

λN

〈0〉

and the tree representation of the term λx∈N. λf∈N→ N→ B. fxy is

λN

λ(N→ N→ B)

•

•

〈0〉 〈1〉

y

An argument reference 〈n〉 represents the argument of the abstraction whose

lambda node appears on the path to the root encountered after skipping n

lambda nodes. This numeric form of argument reference was invented by the

© G. Smolka 10 2007/7/19

Dutch logician Nicolaas de Bruijn (around 1965). Hence a numeric argument

reference 〈n〉 is often called a de Bruijn index.

The language given by types and terms is a a very simple functional lan-

guage discovered by Alonzo Church between 1930 and 1940. It is known as the

language of higher-order logic, and its terms are referred to as simply typed

lambda terms. Simply typed lambda terms can express an amazingly rich class

of mathematical statements. All the example statements we have discussed so

far can be expressed as terms, given the right sorts and names. We will see later

that the language of higher-order logic is more expressive than the languages

that come with propositional logic, predicate logic and modal logic.

1.8 Notational Conventions

We will give a precise definition of the abstract syntax of the language of higher-

order logic in the next section. As it comes to the notation for this language,

we will rely on your experience with mathematical notation in general, and a few

special conventions.

The main notational conventions for types and terms are summarized by the

following grammar:

C sorts

S, T ::= C | S → T types

u,x names

s, t ::= u | st | λx∈T .t terms

There are conventions that make it possible to omit parentheses. For example:

3·x +y ⇝ +((·3)x)y

The symbols + and · are said to have infix status, and the symbol · is said to

take its arguments before the symbol +. We assume the following precedence

hierarchy for some of the function symbols:

=

⇔

⇒

∨

∧

¬

≐ < ≤ > ≥

+ −

·

© G. Smolka 11 2007/7/19

Symbols appearing lower in the hierarchy take their arguments before symbols

appearing higher in the hierarchy. Here are examples of notations that omit

parentheses according to the precedence hierarchy:

x ∨ x ∧y = x ⇝ (x ∨ (x ∧y)) = x

¬¬x ≐ y = y ≐ x ⇝ ¬(¬(x ≐ y)) = (y ≐ x)

© G. Smolka 12 2007/7/19

2 Terms and Types

So far, we know that we can associate a mathematical notation with an inten-

sion and an extension. The intension represents the syntactic structure of the

notation, and the extension is the value decribed by the notation. The language

of higher order logic has two kinds of intensions, called types and terms. The

intension of a notation contains more information than the extension of the no-

tation. Hence we can obtain the extension from the intension. One says that

the extension is obtained by evaluation of the intension. We can represent the

situation with the following diagram:

Notation

Intension Extension

Types, Terms
Evaluation

In this section, we give a mathematical account of types and terms. To simplify

things, we ignore their extensions and treat types and terms as objects of a

mathematical data structure.

2.1 Untyped Terms

We first consider so called untyped terms that do not involve types. Many inter-

esting aspects of terms can be studied with this simplified model, and types can

be added easily once they are needed.

An untyped term is either a name, an application, or an abstraction. Since we

ignore types and extensions, we can take any two terms s, t and construct the

application st. Moreover, we can take a name x and a term t and construct the

abstraction λx.t. We summarize our notational conventions for untyped terms

as follows:

x,y, z, f , g, h names

s, t ::= x | st | λx.t terms

λxy.t := λx.λy.t

stt′ := (st)t′

The tree representation of the term λxy. fxy looks as follows:

© G. Smolka 13 2007/7/19

λ

λ

•

•

f 〈1〉

〈0〉

Note that the tree representations of terms are not subtree-closed. For instance,

the tree

λ

•

•

f 〈1〉

〈0〉

is not a tree representation of a term since it contains the dangling argument

reference 〈1〉. Since combinatorial terms do not involve argument references,

their tree representations are subtree-closed.

Since the names used for argument references in the notation are not part of

the term, the following equations hold:

λxy. fyx = λyx. fxy = λzy. fyz

In other words, the three lambda notations describe the same term although as

notations they are different. On the other hand we have λxy. fyx ≠ λxy. fxy ,

that is, the notations λxy. fyx and λxy. fxy describe different terms (draw

the tree representations).

The size |t| of a term t is the number of nodes in its tree representation, for

instance, |λxy. fxy| = 7. The names N t of a term t are the names occurring

in its tree representation; for instance, N (λxy. fxy) = {f}.

The most interesting operation on terms is substitution. Substitution is

needed for symbolic reasoning based on terms. For instance, substitution is

needed for the formulation of the β-law (§ 1.1). Applying the substitution [x:=s]

to a term t means to replace in t all occurrences of the name x with s. We write

[x:=s]t for the term obtained by applying the substitution [x:=s] to the term t.

For example, the following equations hold:

[x:=y]x = y

[x:=y](fxy) = fyy

[f :=gx](λxy. fyx) = λx′y.gxyx′ = λyz. gxzy

The last equation is particularly interesting. It shows that names used for argu-

ment references may have to be changed if a substitution is applied. The reason

© G. Smolka 14 2007/7/19

is that the application of a substitution is defined on the tree representation of

a term, not on its notation. Hence a name used as argument reference in the no-

tation cannot capture a name that is imported with a substitution. For instance,

we have

[y :=x](λx. fxy) = (λx′. fx′x) = (λy. fyx) ≠ (λx. fxx)

if we assume that x, x′ and y are distinct names.

We don’t associate an extension with untyped terms. In fact, there is no func-

tion f such that the application ff (f applied to f) makes sense (because of the

well-foundedness of sets).

2.2 Axiomatization

There are two complementary methods for giving a precise definition of terms:

1. The constructive approach: Give a construction of terms in set theory.1

2. The axiomatic approch: Give an axiomatization of terms in set theory.2

In 1889, Peano gave an axiomatization for the natural numbers. The real num-

bers are a mathematical data structure that is often introduced with the ax-

iomatic approach. A construction of the real numbers based on the rational

numbers was devised by Richard Dedekind around 1860.

To validate an axiomatization, at least one model (i.e., a construction satisfy-

ing the axioms) has to be devised.

For complex data structures, it is desirable to have an axiomatization since it

has some qualities a construction doesn’t have:

1. An axiomatization forces us to formulate the basic properties of the data

structure explicitly. Some of these properties may not be obvious for a par-

ticular construction.

2. Since an axiomatization formulates the basic properties of the data structure

explicitly, it is a better and more explicit base for proofs.

3. Proofs based on an axiomatization are automatically valid for all models of

the axiomatization.

4. Since an axiomatization specifies the properties that must be satisfied by all

constructions, it doesn’t commit us to the details of a particular construction.

5. An axiomatization gives us the freedom to work with different constructions,

as long as they satisfy the axioms.

Figures 1 and 2 show our axiomatization of untyped terms. The starting

point is a set Ter whose elements we will call terms. Next there is a operation N

1 Constructions are related to implementations in programming.
2 Axiomatizations are related to abstract data types (ADTs) in programming.

© G. Smolka 15 2007/7/19

that yields for every natural number a term. Terms obtainable with N are called

names, and the set of all names is denoted by Nam. For terms and names we

introduce, as a notational device, so-called meta-variables. The fact that x is

declared as a meta-variable for names means that x stands for a name if not said

otherwise.

The axiomatization uses a general form of substitution that can replace

any number of names in parallel. Hence we model substitutions as functions

θ ∈ Nam → Ter . If we have θx = x, the substitution θ replaces x with x, which

means that it leaves the name x unchanged. The axiomatization defines Sub to

be the set Nam → Ter of all substitutions and declares θ as meta-variable for

substitutions.

Next we look at the operations of the axiomatization, which we will refer

to as syntactic operations. With N one obtains names, with A applications,

and with L abstractions. There are also operations that yield the size of a term

and the names occurring in a term. Finally, there is an operation that applies

a substitution to a term. The choice of the syntactical operations represents

the result of a careful analysis. The operations have been chosen such that all

properties of terms can be expressed in a simple way. N , A and L are needed

so that we can obtain every term in finitely many steps from numbers. The

size operation is needed so that we can prove properties of terms by induction

on their size. S and N are needed so that we can axiomatize the abstraction

operation L.

Figure 1 also shows notations for terms, most of which we have already seen.

The notations st, λx.t and θt make it possible to not write the syntactic opera-

tions A, L and S explicitly. This is very convenient, but keep in mind that in case

of doubt it is a good idea to write the syntactic operations explicitly.

The notation [x:=t] stands for the substitution that maps the name x to the

term t, and all other names to themselves.

Figure 2 shows the axioms of the axiomatization. Except for IL and SL, the

axioms are obvious from our intuitive understanding of terms.

Axiom IN says that N is a bijection between N and Nam. This means that

there are as many names as there are natural numbers, no more, no less.

Axiom IL states under which conditions two descriptions λx.t and λx′.t′ yield

the same term. Read from right to left, IL makes precise which variables can be

used as argument variable in the description of an abstraction, and how the

choice of the argument variable affects the body of the description. For instance,

IL says that if t is an abstraction and x is a name that does not occur in t, then

there exists exactly one term s such that t = λx.s.

Axiom SN makes explicit use of the substitution operation S to avoid a nota-

tional disambiguity. It says that the application of S to a substitution θ and a

© G. Smolka 16 2007/7/19

Meta-Variables and Sets

s, t ∈ Ter terms

x,y, z, f , g, h ∈ Nam := {Nn | n ∈ N } names

θ ∈ Sub := Nam → Ter substitutions

Operations

N ∈ N→ Ter name

A ∈ Ter → Ter → Ter application

L ∈ Nam → Ter → Ter abstraction

| · | ∈ Ter → N size

N ∈ Ter → P(Nam) names

S ∈ Sub → Ter → Ter substitution

Notations

st := Ast

λx.t := Lxt

λxy.t := λx.λy.t

stt′ := (st)t′

θt := Sθt

[x:=t] := λy∈Nam. if y = x then t else y

• Terms that can be obtained with N are called names.

• Terms that can be obtained with A are called applications.

• Terms that can be obtained with L are called abstractions.

• A name x occurs in a term t if x ∈N t.

Figure 1: Axiomatization of untyped terms: sets, operations, notations

© G. Smolka 17 2007/7/19

Par Every term is exactly one of the following:

a name, an application, or an abstraction.

IN Nn = Nn′ ⇐⇒ n = n′

IA st = s′t′ ⇐⇒ s = s′ ∧ t = t′

IL λx.t = λx′.t′ ⇐⇒ x′ ∉N (λx.t) ∧ t′ = [x:=x′]t

CN |x| = 1

CA |ts| = 1+ |t| + |s|

CL |λx.t| = 1+ |t|

NN Nx = {x}

NA N (st) =N s ∪N t

NL N (λx.t) =N t − {x}

SN Sθx = θx

SA θ(ts) = (θt)(θs)

SL θ(λx.t) = λx.(θ[x:=x])t if ∀y ∈N (λx.t) : x ∉N (θy)

Figure 2: Axiomatization of untyped terms: axioms

name x yields the same result as the application of the function θ to x.

Axiom SL states how substitution applies to abstractions. It uses a notation

defined as follows:

θ[x:=t] := λy∈Nam. if y = x then t else θy

Given this definition, the substitution θ[x:=x] behaves on all names like θ, ex-

cept possibly for x, which it maps to x.

Use of the Substitution Axioms

We demonstrate the use of the substitution axioms with two examples. We as-

sume that the names x, y , z and f are pairwise distinct. Here is the first example:

[x:=y](λz. fxz) = λz.[x:=y](fxz) SL

= λz.([x:=y]f)([x:=y]x)([x:=y]z) SA

= λz.fyz SN

© G. Smolka 18 2007/7/19

The first line also uses the axioms NN, NA and NL. Here is another example:

[y :=x](λx. fxy) = [y :=x](λz.[x:=z](fxy)) IL

= [y :=x](λz. fzy) SA, SN

= λz.[y :=x](fzy) SL

= λz. fzx SA, SN

Again, the axioms for N are used tacitly.

We will have to apply substitutions frequently in the following. Usually, we

will rely on our intuition and proceed without giving a detailed proof. The point

we want to make with the detailed proofs given above is that in case there is

a doubt about the application of a substitutions, there is firm foundation for

distinguishing between right and wrong.

Explicit Formulation of Axioms

The formulation of the axioms leaves two things implicit:

1. The syntactic operations A, L and S are not written explicitly.

2. The universal quantification of the meta-variables is left implicit.

The omission of the syntactic operations was announced explicitly as a matter

of notation. The omission of the universal quantifiers for meta-variables is a

general convention we have not mentioned so far. As an example, we give the

explicit formulation of the axiom IL:

∀x ∈ Nam ∀t ∈ Ter ∀x′ ∈ Nam ∀t′ ∈ Ter :

Lxt = Lx′t′ ⇐⇒ x′ ∉N (Lxt) ∧ t′ = S[x:=x′]t

2.3 Basic Properties

Based on the axiomatization of terms, one can prove many properties of terms.

For most proofs one needs induction on the size of terms.

Proposition 2.1 N t is a finite set.

Proof By induction on |t|. Case analysis according to Par.

Case t = x. Then N t = {x} by NN.

Case t = ss′. Then N t = N s ∪N s′ by NA. By CA we can use induction for s

and s′ and hence know that N s and N s′ are finite. Hence N t is finite.

Case t = λx.s. Then N t = N s − {x} by NL. By CL we can use induction for s

and hence know that N s is finite. Hence N t is finite. �

Proposition 2.2 (Coincidence) (∀x ∈N t : θx = θ′x) =⇒ θt = θ′t

© G. Smolka 19 2007/7/19

Proposition 2.3 (Identity Substitution) S(λx∈Nam. x)t = t

Proposition 2.4 (Renaming) x ∉N t =⇒ [x:=s]([y :=x]t) = [y :=s]t

Proposition 2.5 x ∈N (θt) ⇐⇒ ∃y ∈N t : x ∈N (θy)

Proposition 2.6 t′ = [x:=x′]t =⇒ (t = [x′:=x]t′ ⇐⇒ x′ ∉N (λx.t))

Proposition 2.7 λx.t = λx′.t′ ⇐⇒ t = [x′:=x]t′ ∧ t′ = [x:=x′]t

2.4 Reduction

Here are two rewrite rules for terms:

(λx.s)t → [x:=t]s β-rule

λx.sx → s if x ∉N s η-rule

The rules correspond to the left-to-right application of the β- and η-law (§ 1.1).

Here is an example where a term is rewritten three times with the β-rule:

(λf .fa)(λxy.fxy)b → (λxy.fxy)ab β

→ (λy.fay)b β

→ fab β

In the next example, a term is rewritten with the η- and the β-rule:

(λhx.fhx)(λx.gx)a → (λhx.fhx)ga η

→ (λh.fh)ga η

→ fga β

We write s → t and say that s reduces to t in one step if s can be rewritten to t

by a single application of the β- or η-rule. Moreover, we write s →∗ t and say

that s reduces to t if s can be rewritten to t by finitely many applications of the

β- and η-rule. Note that we have s →∗ s for every term s since finitely many

applications includes zero applications.

A term t is called βη-normal if it cannot be reduced, that is, neither the β-rule

nor the η-rule apply to it. For instance, the term λxy. fyx is βη-normal, but the

term λxy. fxy is not. Every combinatorial term is βη-normal.

A term t is called a βη-normal form of a term s if s →∗ t and t is βη-normal.

Here is a famous theorem that was shown first around 1935.

Theorem 2.8 (Chuch-Rosser) A term has at most one βη-normal form.

© G. Smolka 20 2007/7/19

The proof of the theorem is not straightforward and will not be given here.

However, it is easy to show that the theorem is sharp, that is, that there are terms

that don’t have a βη-normal form. Here we go:

(λx.xx)(λx.xx) → (λx.xx)(λx.xx)

The example shows that rewriting with the β-rule may reproduce a term. This

means that reduction doesn’t terminate on all terms. Interestingly, there are

terms that have a βη-normal form although reduction doesn’t necessarily termi-

nate on them:

(λx.y)Ω → y

(λx.y)Ω → (λx.y)Ω

where Ω = (λx.xx)(λx.xx).

Reduction of untyped terms is computationally interesting. Church and Tur-

ing showed that for every computable function there is a term such that reduc-

tion with the β-rule computes the function. The system given by untyped terms

and the reduction rules β and η is often referred to as the untyped lambda

calculus.

2.5 Subterms

We define the subterms of a term t recursively:

1. If t = ss′, then s and s′ are subterms of t.

2. If t = λx.s, then s is a subterm of t.

3. t is a subterm of t.

4. If s is a subterm of a subterm of t, then s is a subterm of t.

A term s is a proper subterm of term t if s ≠ t and s is a subterm of t. Here are

examples:

• The proper subterms of fxy are fx, f , x and y .

• s is a proper subterm of λx.x if and only if s is a name.

• λx.y has only one proper subterm, provided x ≠ y .

Proposition 2.9 A term is combinatorial if and only if none of its subterms is an

abstraction.

Proposition 2.10 A term has infinitely many subterms if and only if it has a

subtem λx.s with x ∈N s.

© G. Smolka 21 2007/7/19

2.6 Recursive Definitions and the Canonical Name Convention

Terms are a recursive data structure. This is a consequence of the fact that every

term can be obtained in finitely many steps from names with the operations

A and L. Since terms are a recursive data structure, functions on terms must

usually be defined by recursion of the structure of terms. Here is the recursive

definition of a function that yields the depth of a term:

depth ∈ Ter → N

depth x = 0

depth(st) = 1+max{depth s, depth t}

depth(λx.s) = 1+ depth s

Look carefully at this definition. The case analysis is exhaustive and the recur-

sion is terminating. However, the last equation is not disjoint since for every

abstraction t there are infinitely many pairs x, s such that t = λx.s. This means

that the definition, as it stands, is not admissible. We fix the problem by choos-

ing for every abstraction t a name x ∉N t, and by constraining the last equation

to use this canonical name:

depth(λx.s) = 1+ depth s if x is the canonical name for λx.s

Now that the definition of depth is fixed, we look again at the unconstrained

equation

depth(λx.s) = 1+ depth s

Intuitively, it is clear that the equation holds for all names x and all terms s. But

how can we prove this? By Axiom IL, we know that it suffices to show

depth([x:=y]s) = depth s

for all names x, y and all terms s. We prove the following, more general prop-

erty.

Claim ∀t ∈ Ter ∀θ ∈ Sub : Ran θ ⊆ Nam =⇒ depth(θt) = depth t

Proof By induction on |t|. Let Ran θ ⊆ Nam. To show: depth(θt) = depth t.

Case analysis.

Case t = x. Exercise.

Case t = ss′. Exercise.

Case t = λx.s where x is the canonical name for t. By the definition of depth

it suffices to show depth(θt) = 1 + depth s. We choose a name y such that

© G. Smolka 22 2007/7/19

t = λy.[x:=y]s and θt = λy.(θ[y :=y])([x:=y]s). Let z be the canonical name

for θt. Then θt = λz.[y :=z]((θ[y :=y])([x:=y]s)). Let

θ′ := λn∈N .[y :=z]((θ[y :=y])([x:=y]n))

Then θt = λz.θ′s and Ran θ′ ⊆ Nam. By induction depth(θ′s) = depth s. Thus

depth(θt) = depth(λz.θ′s) = 1+ depth(θ′s) = 1+ depth s. �

In the following we will use the canonical name convention (CNC):

1. In a defining equation f(λx.s) = · · · , the name x is always the canonical

name for the abstraction λx.s. This constraint applies without mentioning.

2. Defining equations f(λx.s) = · · · will always be chosen such that they are

valid for all names that can be used as argument references, not just the

canonical ones. This fact will be used tacitly and proofs will not be given

(they tend to be tedious, see above).

To give an example that violates the second requirement of the CNC, we choose

a name a and define a function

foo ∈ Ter → N

foo x = (x = a)

foo(st) = foo s + foo t

foo(λx.s) = foo s if x canonical for λx.s

The definition of foo is fine. However, the defining equation for abstractions does

not hold unconstrained. To see this, let b be a name different from a. Since we

have λa.a = λb.b, we can obtain a contradiction as follows:

1 = (a = a) = foo a = foo(λa.a) = foo(λb.b) = foo b = (b = a) = 0

2.7 Construction of a Term Structure

We now construct a structure satisfying the axiomatization of terms. Terms

are modeled as trees whose leaves are natural numbers. Dangling argument

references are interpreted as names. This way we obtain a tree representation of

terms that is subtree-closed. For instance, the term λxy. fxy , where f , x, and

y are distinct names and f = 4, is represented by the following tree:

λ

λ

•

•

6 1

0

© G. Smolka 23 2007/7/19

This leads to the following recursive definition:

Ter := N∪ ({1} × Ter)∪ ({2} × Ter × Ter)

Names are modelled as natural numbers, abstractions as pairs (1, t), and appli-

cations as triples (2, s, t). The operation N and A are defined as follows:

Nn := n

Ast := (2, s, t)

The definition of the operation L is not as straightforward and will be given

once we have defined the substitution operator. We will write λt for (1, t) and

st for (2, s, t). The definition of the size operation is by recursion on the term

structure:

|x| = 1

|λs| = 1+ |s|

|st| = 1+ |s| + |t|

The definition of N is more involved since N must distinguish between argu-

ment references and names. To do this for a leaf marked with the number x,

we need to know the number d of lambdas on the path from the leaf to the root

of the tree. If x < d, the leaf represents an argument reference. If x ≥ d, the

leaf represents the name x − d. We can define N with an auxiliary function

N ′ : N→ Ter → P(Ter):

N s =N ′0 s

N ′dx = if x < d then 0 else {x − d}

N ′d(λs) =N ′(d+ 1) s

N ′d(st) =N ′ds ∪N ′d t

The substitution operator S is defined in a similiar way with an auxiliary function

S′ : N→ Sub → Ter → Ter :

Sθ s = S′0θ s

S′dθx = if x < d then x else shift d(θ(x − d))

S′dθ (λs) = λ(S′(d+ 1)θ s)

S′dθ (st) = (S′dθ s)(S′dθ t)

The first equation for S′ uses an auxiliary function shift : N → Ter → Ter that

increments the name references of a term by a given number. We can define shift

mutually recursive with S:

shift dx = x + d

© G. Smolka 24 2007/7/19

shift ds = S (λn∈N. n+ d) s if s is not a name

The mutual recursion terminates since shift handles names directly and uses S

only with substitutions that replace names with names. For such substitutions, S′

uses shift only for names.

With the substitution operation S it is easy to define the abstraction opera-

tion L:

Lx s = λ(S (λn∈N. if n = x then 0 else n+ 1) s)

This completes our construction of a term structure. We will skip the proofs

showing that the axioms are satisfied. The construction was invented by Nicolaas

de Bruijn in the late 1960’s to be used for the implementation of his language

Automath.

Exercise 2.11 Implement the term structure in a functional programming lan-

guage.

2.8 Typed Terms

The language of higher-order logic uses typed terms so that it can syntacticly

ensure that functions are only applied to admissible arguments. This way, mean-

ingless applications like 5x or ff are excluded.

We start with a set Sor of primitive types, which we call sorts. The set Ty of

types is the least set that contains all sorts and is closed under pairing of types:

A,B ∈ Sor sorts

S, T ∈ Ty := Sor ∪ (Ty × Ty) types

We assume that Sor and Ty × Ty are disjoint sets and arrange the following

notations:

S → T := (S, T)

S → S′ → T := S → (S′ → T)

Types of the form S → T are called functional types. Every type can be uniquely

written in the form S1 → ·· · → Sn → A where n ≥ 0 and A is a sort. We may

think of the elements of a type S1 → ·· · → Sn → A as operations that take n

arguments of the types S1, . . . , Sn and yield a result of the sort A. (Note that we

have not yet defined what an element of a type is.)

To arrive at typed terms, we modify our axiomatization of terms such that

names are obtained from numbers and types:

N ∈ N→ Ty → Ter

© G. Smolka 25 2007/7/19

Nam := {NnT | n ∈ N, T ∈ Ty }

The axiom IN now takes the form

IN NnT = Nn′T ′ ⇐⇒ n = n′ ∧ T = T ′

It ensures that the type of a name is unique and that there are infinitely many

names for every type. Moreover, we include a syntactical operation

τ ∈ Nam → Ty

that satisfies the axiom

Tau τ(NnT) = T

and thus yields the type of a name. Furthermore, we extend the Axiom IL as

follows:

IL λx.t = λx′.t′ ⇐⇒ τx = τx′ ∧ x′ ∉N (λx.t) ∧ t′ = [x:=x′]t

The axiom now ensures that an abstraction knows the type of its argument, and

that only names of this type can be used as argument references. Hence, we

annote every lambda node in the tree representation of a typed term with the

argument type of the corresponding abstraction. For instance, if we have τf =

A → B and τx = A, then the tree representation of the typed term λfx. fxy

looks as follows:

λ(A→ B)

λ A

•

•

〈1〉 〈0〉

y

Finally, we need an axiom that ensures that the sets Ter and Ty are disjoint:

Dis Ter ∩ Ty = 0

This completes our axiomatization of typed terms.

2.9 Well-typed Terms

Next we define a predicate (:) ∈ Ter → Ty → B that we will use to define the

notion of a well-typed term. We define (:) such that (t : T) = 1 if and only if the

term t is well-typed and has the type T :

(:) ∈ Ter → Ty → B

© G. Smolka 26 2007/7/19

(x : S) = (τx = S)

(st : S) = (∃T ∈ Ty : (S : T → S) ∧ (t : T))

(λx.s : S) = (∃T ∈ Ty : S = τx → T ∧ (s : T))

Note that this definition complies with the CNC. We can now define well-typed

terms and substitutions:

• A term t is well-typed if there exists a type T such that t : T .

• A substitution θ is well-typed if θx : τx for all names x.

Every well-typed term has exactly one type:

Proposition 2.12 (Unique Types) s : S ∧ s : T =⇒ S = T

If s is a well-typed term, we call the unique type S sucht that s : S the type of s

and denote is with τs.

There is a straightforward algorithm that checks whether a term is well-typed

and yields its type if this is the case. The algorithm can be illustrated on the

tree representation of a term. First, every leaf is attributed with a type. If the

leaf is a name, the type is obtained with τ . If the leaf is an argument reference,

the type is obtained from the λ-node the argument reference refers to. Now the

types are propagated upwards to the root. At a node λ(S) nothing can go wrong:

The node receives the type S → T where T is the type of the node below. At

an application node, there is a constraint: The type from the left son must be a

functional type S → T and the type from the right son must be S. If this is the

case, the application node receives the type T .

The next proposition says that applications of well-typed substitutions and re-

duction steps with the β- and η-rule preserve well-typedness and, even stronger,

preserve the type of a term.

Proposition 2.13 (Type Preservation)

1. s : S ∧ θ well-typed =⇒ θs : S

2. s : S ∧ s → t =⇒ t : S

The next theorem is difficult to prove. It says that applying the β- and η-rule

to a well-typed term will always yield a βη-normal form after finitely many steps.

Theorem 2.14 (Tait 1967) Reduction of well-typed terms terminates.

Together with the Church-Rosser Theorem, Tait’s theorem yields the follow-

ing corollary.

Corollary 2.15 Every well-typed term has exactly one βη-normal form.

© G. Smolka 27 2007/7/19

Tait’s theorem gives us a straightforward algorithm for computing the βη-

normal form of a term: Apply the rules as long as they are applicable. The

number of reduction steps needed to reach the normal form may be huge. Rick

Statman [1979] showed that there is no elementary recursive bound with respect

to the size of the term.

2.10 Preterms

By now, we are used to interpret a notation like λx.fx as a description of a

term. To discuss some fine points, we will introduce a further interpretation,

which sees a notation like λx.fx as a description of a so called preterm. We will

ignore types. The situation is best explained with a picture:

λx.fx

Notation

=⇒ Lx(Afx)

Notation

=⇒

•

•

L x

•

•

A f

x

Preterm

=⇒ λ

•

f 〈0〉

Term

The preterm is a direct representation of the notation obtained with the syntactic

operations A and L. The preterm contains more information than the term. In

fact, given a term structure, we can see the preterm is the intension and the term

as is the extension of the notation λx.fx. This means that evaluation of the

preterm will yield the term. The main difference between preterms and terms is

the fact that preterms model argument references implicitly with names while

terms model argument references explicitly with numbers.

Church based higher-order logic on preterms. It took some time until the

notion of a term was invented by de Bruijn. The advantage of preterms is that

they are close to the usual mathematical notation. The problem with preterms is

that they lead to a rather complex definition of the substitution operation. For

instance, it is not even clear, which preterm the application of the substitution

[x:=y] to the preterm λy.x should yield.

Church introduced α-equivalence of preterms. Two preterms are α-

equivalent if they are equal up to consistent renaming of the names used for

argument references. Based on preterms, it is a tedious enterprise to formally

define what is meant by consistent renaming. With terms, however, we ob-

tain a straightforward characterization of α-equivalence: Two preterms are α-

equivalent if and only if they evaluate to the same term.

One can use a more direct notation for terms than the usual one. For instance,

the term λx.fx can be described more directly with the notation λ(f 〈0〉), and

the term λf .(λx. fx)a with the notation λ(λ(〈1〉〈0〉)a). Technically, it would

© G. Smolka 28 2007/7/19

be preferable to use the direct notation but most people prefer the conventional

notation. The picture changes when we implement terms. Then the conventional

notation is only used at the user interface and all internal processing is done

with the direct notation. The construction of the term structure in § 2.7 gives us

a good idea how this looks like.

The presentation of reduction in § 2.4 is based on the conventional notation

for terms. For instance, we have the reduction λf .(λx. fx)a → λf . fa. If we

switch to the direct notation, we get λ(λ(〈1〉〈0〉)a) → λ(〈0〉a), or, graphically,

λ

•

λ

•

〈1〉 〈0〉

a -→

λ

•

〈0〉 a

Canonical names give us a means to single out canonical preterms. We call

a preterm canonical if it employs only canonical names as argument references.

There exists exactly one canonical preterm for every term. Hence we can con-

struct a term structure based on preterms.3

Exercise 2.16

a) Give 2 different preterms for the term λx.x.

b) How many preterms exist for the term λx.x?

c) How many preterms exist for the term f(gx)?

Exercise 2.17 Let a term structure with Nam = N be given and assume that the

canonical name for an abstraction is the least name that does not occur in the

abstraction. Then L0 0 and L0 (L1 (A0 1)) are canonical preterms that evaluate

to the terms λx.x and λfx. fx. Give the canonical preterms for the following

terms.

a) λxy.y

b) λxy.x

c) λfgx. f(gx)

3 Details can be found in Allen Stoughton, Substitution Revisited, Theoretical Computer Science,

59:317-325, 1988.

© G. Smolka 29 2007/7/19

Specification Group

Sort G

Constants · : G → G → G

e : G

i : G → G

Axioms (x ·y) · z = x · (y · z) Associativity

e ·x = x Identity

ix · x = e Inversion

Figure 3: Specification of groups

3 Specifications and Models

Higher-Order logic (HOL) is a specification language based on well-typed terms.

It can specify abstract structures like groups, but also concrete data structures

like the natural numbers.

3.1 Motivating Example: Groups

The specification shown in Figure 3 specifies a class of mathematical structures

known as groups. According to this specification, a group consists of a set G and

three objects

· ∈ G → G → G

e ∈ G

i ∈ G → G

such that for all x,y, z ∈ G the following equations hold:

(x ·y) · z = x · (y · z) e ·x = x ix ·x = e

A concrete group is obtained if we take the set Z of natural numbers as G, addi-

tion as · , 0 as e, and λx∈Z.−x as i.

Speaking generally, the groups are the models of the group specification. The

group specification is useful since (1) many concrete structures contain groups

and (2) we can use the specification to prove properties of all groups. Here is a

typical example.

Proposition 3.1 For every group G and every x ∈ G the equation x · ix = e

holds.

© G. Smolka 30 2007/7/19

Proof Let G be a group and x ∈ G. Then:

x · ix = (e · x) · ix Identity

= ((i(ix) · ix) · x) · ix Inversion

= i(ix) · ((ix ·x) · ix) Associativity

= i(ix) · (e · ix) Inversion

= i(ix) · ix Identity

= e Inversion �

Exercise 3.2 Prove that x · e = x holds for every group G and every x ∈ G.

In HOL, mathematical statements are represented as well-typed terms of

type B, called formulas, where the sort B represents the set B = {0,1}. A speci-

fication is just a set of formulas. To express the axioms for groups as formulas,

we use a name ≐ : G → G → B representing the identity predicate for the set G.

Moreover, we distinguish between two groups of names: The constants ·, e, i, ≐

on the one hand, and the variables x, y , z on the other hand.

In the following, we will give a precise definition of specifications and their

models. This will include a definition of what is means that a formula is valid in

a structure.

3.2 Interpretations and Evaluations

We will only consider well-typed terms and well-typed substitutions in this chap-

ter. We will use Ter as name for the set of all well-typed terms.

The first step consists in giving a definition of what we mean by the extension

of types and terms.

1. First we fix extensions for all sorts. The extension of a sort must be a non-

empty set.

2. We obtain the extension of a functional type S → T as the set of all functions

from the extension of S to the extension of T .

3. Next we fix type-observing extensions for all names (i.e., the extension of a

name must be an element of the extension of its type).

4. The extension of an application st is the value ϕv , where ϕ is the function

obtained as extension of s and v is the extension of t. Since the term st is

well-typed, we can be sure that ϕ is in fact a function defined on v .

5. The extension of an abstraction λx.s is the function ϕ that maps every

value v in the extension of τx to the value that is obtained as the extension

of s, where the name x is given the extension v .

© G. Smolka 31 2007/7/19

A proper definition of the extensions for types and terms requires recursion on

types and terms. Moreover, the change of the extension of the name x in clause

(5) asks for a more formal definition.

First we address clauses (1), (2) and (3). An interpretation is a function I such

that:

1. Dom I = Ty ∪ Nam

2. I(S → T) = {ϕ |ϕ function IS → IT }

3. Ix ∈ I(τx)

Condition (2) is required for all types S and T , and condition (3) is required for

all names x.

We will use the word atom to refer to both sorts and names.

Proposition 3.3 (Coincidence) If I and I ′ agree on all atoms, then I = I ′.

Proof We need to show: ∀T : IT = I ′T . This can be done by induction on |T |. �

Proposition 3.4 IT ≠ 0.

Proof Let I be an interpretation and T be a type. By Axiom Inf we know that

there is a name x with τx = T . Hence Ix ∈ I(τx) = IT . �

Given an interpretation I , a name x and a value v ∈ I(τx), we use Ix,v to denote

the interpretation I[x:=v]. Note that Ix,v satisfies the following equations:

Ix,vT = IT

Ix,vy = if y = x then v else Iy

Proposition 3.5 (Evaluation) For every interpretation I there exists one and only

one function Î such that:

1. Dom (Î) = Ter

2. Ît ∈ I(τt)

3. Îx = Ix

4. Î(st) = (Îs)(Ît)

5. Î(λx.t) = λv∈I(τx). Îx,vt

We call Î the evaluation function for I .

Proof To show the existence of Î, we define Î recursively according to (3), (4)

and (5), where (5) is constrained to canonical names. The properties (1), (2)

and the uniqueness of Î are immediate consequences of this definition. The

unconstrained version of (5) can be shown with Proposition 3.6. The proof of

this proposition must be based on the recursive definition of Î . �

© G. Smolka 32 2007/7/19

Given an interpretation I and a substitution θ, we use Iθ to denote the interpre-

tation defined as follows:

IθT = IT

Iθx = Î(θx)

Proposition 3.6 (Substitution) Î(θt) = Îθt.

Proof By induction on |t|. Tedious. �

The atoms occurring in a type or term are defined as follows:

AtomA = {A}

Atom (S → T) = AtomS ∪AtomT

Atom (x) = {x} ∪Atom (τx)

Atom (st) = Atom s ∪Atom t

Atom (λx.t) = Atom (τx)∪ (Atom t − {x})

If an atom occurs in a term or type, we also say that the term or type contains

the atom or depends on the atom.

Proposition 3.7 (Coincidence) If I and I ′ agree on Atom t, then Ît = Î ′t.

3.3 Semantic Equivalence and Correctness of the β- and η-Law

Two terms s and t are semantically equivalent if they have the same type and

Îs = Ît for every interpretation I .

Recall the statement of the β-law in § 1.1. There we had no definition of terms,

substitutions, and the extension of terms. Hence the β-law appeared as basic law

one just had to believe in. Given our formalization of terms and evaluation, the

β-law has turned into an ordinary mathematical statement that we can prove.

Proposition 3.8 (β-Law) (λx.s)t and [x := t]s are semantically equivalent if

(λx.s)t is a term.

Proof Let I be an interpretation and (λx.s)t be a term. Then:

Î((λx.s)t) = (λv∈I(τx). Îx,vs)(Ît) Proposition 3.5

= Îx,Ît(s)

= Î[x:=t](s)

= Î([x := t]s) Proposition 3.6 �

© G. Smolka 33 2007/7/19

The alert reader will notice that the proof uses the β-law at the meta level

when it proceeds from the first to the second line. So what the proof shows is

just the validity of the β-law in our term-based reconstruction of mathematical

language. This is good enough since just this was claimed. What we prove are

properties of our reconstruction, and for the proofs we use ordinary mathemat-

ical reasoning, which includes the β-law. Studying reconstructions of mathemat-

ical language and mathematical reasoning by means of mathematical language

and mathematical reasoning is what mathematical logic does, and this approach

has turned out to be highly successful, both as it comes to insight and to practi-

cal applications.

Exercise 3.9 (η-Law) Prove that λx.sx and s are semantically equivalent if λx.sx

is a term such that x does not occur in s.

Proposition 3.10 If s is obtained from t by βη-reduction, then s and t are se-

mantically equivalent.

Proof Follows with Proposition 3.8 and Exercise 3.9. �

3.4 Formulas and Specifications

To use the language of types and terms as specification language, we have to

built-in some logical primitives. We follow Henkin and choose the identities.

To do so, we fix in the underlying term structure a sort B (read bool) and, for

every type T , a name ≐T whose type is T → T → B. We call the name ≐T the

identity for T . Moreover, we tacitly assume that all interpretations I give B and

the identities their canonical extensions:

I B = B

I(≐T) = λu∈IT . λv∈IT . (u=v)

Terms of type B are called formulas. We use the notation

s = t := (≐T)st if s : T and t : T

and call formulas of the form s = t equations. The sort B and the identities are

jointly referred to as fixed atoms; all other atoms are called unfixed.

We also tacitly assume that all substitutions respect the identities, that is,

θ(≐T) = (≐T) for every substitution and every identity.

Finally, we partition the set of names in two subsets Var and Par whose ele-

ments we call variables and parameters. The partition is chosen such that there

are infinitely many variables and infinitely many parameters for every type.

© G. Smolka 34 2007/7/19

A signature is a set Σ of unfixed atoms such that every unfixed sort occurring

in the type of a parameter of Σ is in Σ. A type is licensed by a signature if

every unfixed sort occurring in the type is in the signature. A term is licensed

by a signature if every unfixed sort and every unfixed parameter occurring in the

term is in the signature.

A structure is a function A such that Dom A is a signature and there exists

an interpretation I such that A ⊆ I . Given a structure A, we use ΣA := Dom A

to denote the signature of A. An interpretation I is licensed by a structure

A if A ⊆ I . A type or a term is licensed by a structure if it is licensed by the

signature of the structure.

Proposition 3.11 (Coincidence) Let I and I ′ be licensed by A. Then:

1. If a type T is licensed by A, then IT = I ′T .

2. If term t is licensed by A and I and I ′ agree on all variables occurring in t,

then Ît = Î ′t.

A structure A satisfies a formula s if Îs = 1 for all interpretations licensed

by A. We write A ⊨ s if A satisfies s. We also say that s is valid in A if A sat-

isfies s. It is the definition of A ⊨ s where the difference between variables and

parameters becomes apparent: The structure A must satisfy the formula s for

all possible values of the variables, while it can fix the extensions of parameters

and sorts.

A specification is a set of formulas. The formulas of a specification are called

the axioms of the specification, and the parameters occurring in the axioms of a

specification are called the constants of the specification. We use CA to denote

the set of all constants of a specification A. An atom occurs in a specification if

it occurs in an axiom of the specification. The signature of a specification is the

set of all unfixed sorts and all unfixed parameters that occur in the specification.

We use ΣA to denote the signature of a specification A. A type or a term is

licensed by a specification if it is licensed by the signature of the specification.

A structure satisfies a specification if it satisfies every formula of the speci-

fication. We write A ⊨ A to say that a structure A satisfies a specification A.

A model of a specification is a structure that satisfies the specification and

interprets exactly the unfixed atoms occurring in the specification.

You should now verify that the models of the specification Group in Figure 3

are exactly the structures that are called groups. So we have succeeded in con-

structing a specification language that can specify groups.

We say that a specification A semantically entails a formula s and write A ⊨ s

if every structure that satisfies A also satisfies s.

Proposition 3.12 A ⊨ s ⇐⇒ every model of A satisfies s.

© G. Smolka 35 2007/7/19

Convince yourself that Proposition 3.1 states that the specification Group en-

tails the formula x · ix = e.

Proposition 3.13 (Semantic Equivalence) Let s and t be terms of the same type.

Then s and t are semantically equivalent if and only if 0 ⊨ s = t.

The kernel of a substitution contains all names that are changed by the sub-

stitution:

Kerθ := {x ∈ Nam | θx ≠ x } Kernel of θ

Note that the kernel of the identity substitution is empty.

Proposition 3.14 (Stability) A ⊨ s ∧ Kerθ ∩CA = 0 =⇒ A ⊨ θs

Here is a summary of the three relations that we denote with the symbol ⊨:

A ⊨ s ⇐⇒ ∀I : A ⊆ I =⇒ Îs = 1 structure satisfies formula

A⊨ A ⇐⇒ ∀s ∈ A : A⊨ s structure satisfies specification

A ⊨ s ⇐⇒ ∀A : A⊨ A =⇒A ⊨ s specification entails formula

The notion of semantic entailment was first defined by Alfred Tarski around

1930.

3.5 Boolean Algebras

George Boole was a self-taught mathematician who wanted to axiomatize the

laws of thought (this is the title of his famous book from 1854). What he came

up with was essentially the specification BA shown in Figure 4. Boole thought

of the sort D as the domain of truth values, of 0 as false, 1 as true, + as “or”,

· as “and”, and ¯ as “not”. He thought it possible that there are more than

2 truth values. As it turned out, Boole’s axioms are also satisfied by the set

operations intersection, union and complement. Historically, Boole’s work was

the first investigation of abstract algebras, and it preceded Cantor’s invention of

set theory.

The models of BA are known as Boolean Algebras. The two-valued Boolean

algebra T is the structure that interprets the sort D as B = {0,1}, the constants

0 and 1 as their names suggest, the functional constant¯as negation, and + and ·

as disjunction and conjunction. It is easy to see that T is a model of BA.

We now come to the models of BA that interpret the functional constants

as set operations. To obtain such a model, we start from any set X. Now we

interpret the sort D as the set of all subsets of X (the power set of X). The basic

constants 0 and 1 are interpreted as 0 and X. The functional constants ,̄ +, and ·

© G. Smolka 36 2007/7/19

Specification BA

Sorts D

Constants 0,1 : D

¯ : D → D

+, · : D → D → D

Axioms

Commutativity x·y = y·x x +y = y + x

Associativity (x·y)·z = x·(y·z) (x +y)+ z = x + (y + z)

Distributivity x·(y + z) = x·y + x·z x +y·z = (x +y)·(x + z)

Identity x·1 = x x + 0 = x

Complement x·x̄ = 0 x + x̄ = 1

Figure 4: Specification of Boolean algebras

are interpreted as the set operations complement with respect to X, union and

intersection. The verification that the thus obtained structure PX is a model of

BA is not difficult. The Boolean algebras PX are known as power set algebras.

Exercise 3.15 How would you prove BA 6⊨ 0 = 1?

Here is a well-known example of a law that holds in Boolean algebras.

Proposition 3.16 BA ⊨ x ·x = x

Proof The proof uses the Commutativity and Associativity tacitly and mentions

the use of the other axioms explicitly.

x · x = x · x + 0 Identity

= x · x + x · x̄ Complement

= x · (x + x̄) Distributivity

= x · 1 Complement

= x Identity �

A famous result of Boolean Algebra is Stone’s Representation Theorem

(1936), which says that every finite Boolean algebra is isomorphic to a power

set algebra, and that every infinite Boolean algebra is isomorphic to a subalgebra

of a power set algebra.

Exercise 3.17 Is there a Boolean algebra with 7 elements?

© G. Smolka 37 2007/7/19

The specification BA is not minimal. In J. Eldon Whitesitt’s Boolean Algebra

and its applications (Addison Wesley, 1961) you will find a proof that the asso-

ciativity axioms are semantically entailed by the other axioms.

There exist many equivalent specifications of Boolean Algebra. Here is one

due to Huntington and Robbins (1933) that consists of only four axioms:

x + y = y + x

(x +y)+ z = x + (y + z)

xy = x̄ + ȳ

(x +y)(x + ȳ) = x

Let’s call this specification HR. It’s easy to see that every model of BA is a model

of HR. However, it took until 1996 that William McCune could prove the other

direction with the help of an automated theorem prover. From this we learn

that deciding whether two specifications have the same models can be extremely

difficult.

You will find lots of interesting information about Boolean algebras in the

Web (start with Wikipedia).

3.6 Specification of Logical Operations

We have seen in Chapter 1, that 0 and 1 and the logical operations can be ex-

pressed as terms that contain no other names but the identities (Henkin’s reduc-

tion). The specification LD shown in Figure 5 specifies 0 and 1 and the logical

operations based on this insight. If X is a non-empty set, then LD has exactly one

model that interprets D as X. Note that LD uses the identities for B, B → B → B,

(B → B → B) → B, and (D → B) → B.

It is possible to be even more minimal and specify 0, 1 and the logical opera-

tions just with the identity for B. This is done with specification LA in Figure 6.

As we will see, given the interpretation of the sort D, the specification LD has

exactly one model. In this model, 0, 1, →, and ∀ are interpreted as announced,

and ≅ is interpreted as the identity predicate for the interpretation of D.

To prove the claim, we look at the specification in the usual mathematical

mode. Let a set D and objects

a, b ∈ B

→ ∈ B → B → B

∀ ∈ (D → B)→ B

≅ ∈ D → D → B

© G. Smolka 38 2007/7/19

Specification LD

Sort D

Constants 0,1 : B

¬ : B → B

∧,∨,→,↔ : B → B → B

∀,∃ : (D → B)→ B

Axioms 0 = (λxy.x = λxy.y) where x : B

1 = (0 = 0)

¬x = (x = 0)

x ∧y = (λf .fxy = λf .f11) where f : B → B → B

x ∨y = ¬(¬x ∧¬y)

x → y = ¬x ∨y

x ↔ y = (x → y)∧ (y → x)

∀f = (f = λx.1)

∃f = ¬(f = λx.0)

Figure 5: Specification of logical operations by explicit definition

Specification LA

Sort D

Constants 0,1 : B

→ : B → B → B

∀ : (D → B) → B

≅ : D → D → B

Axioms x = (x = 1) A1

1→ x = x I1

f0 → f1 → fx BCA (Boolean case analysis)

∀(λx.1) ∀1

∀f → fx ∀ I (Instantiation)

x ≅ x Ref (Reflexivity)

(x ≅ y)→ fx → fy Rep (Replacement)

Figure 6: Specification of logical operations by axiomatization

© G. Smolka 39 2007/7/19

be given, such that for all x ∈ B, all f ∈ B → B, all y, z ∈ D, and all g ∈ D → B

the following equations hold:

x = (x = b) A1

b → x = x I1

fa → fb → fx = 1 BCA

∀(λd∈D.b) = 1 ∀1

∀g → gd = 1 ∀ I

y ≅ z = 1 Ref

(y ≅ z)→ gy → gz = 1 Rep

Now we prove the following.

1. b = 1. Follows with A1: b = (b = b) = 1.

2. a = 0. Assume a = 1. Then we obtain a contradiction as follows:

1 = a→ b → 0 BCA with f = λx∈B.x and x = 0

= 1→ 1 → 0 b = 1, a = 1

= 0 I1

3. 0→ x = 1 for all x ∈ B. Let x ∈ B. Then:

0→ x = a→ b → x a = 0 and I1

= 1 BCA with f = λx∈B.x

4. ∀f = 0 for all f , y such that fy = 0. Let fy = 0. Then ∀f → 0 = ∀f → fy

= 1 by ∀ I. Hence ∀f = 0 by contradiction and I1.

5. (y ≅ z) = 0 if y ≠ z. Let y ≠ z and (y ≅ z) = 1. Then we obtain a

contradiction as follows:

1 = (y ≅ z) → (y = y) → (z = y) Rep with g = λd∈D.(d=y)

= 1→ 1 → 0 assumptions

= 0 I1

3.7 Specification of the Natural Numbers

A specification of the natural numbers was first given by Giuseppe Peano in 1889.

We will use the specification Nat shown in Figure 7.

We already know that every model will give 0, 1, → and ∀ their canonical

interpretation. The standard model interprets N as N, o as 0, S as the successor

© G. Smolka 40 2007/7/19

Specification Nat

Sort N

Constants 0,1 : B

→ : B → B → B

∀ : (N → B)→ B

o : N

S : N → N

≤ : N → N → B

Axioms x = (x = 1) A1

1→ x = x I1

f0 → f1 → fx BCA

∀(λx.1) ∀1

∀f → fx ∀ I

fo → ∀(λx.fx → f(Sx)) → fx Ind (Induction)

(o ≤ y) = 1

(Sx ≤ o) = 0

(Sx ≤ Sy) = (x ≤ y)

Figure 7: Specification of the natural numbers

function λn∈N. n+1, and ≤ with the order predicate the symbol suggests. Verify

that this construction in fact yields a model..

We will show that every model interprets N as an infinite set and satisfies (in

mathematical notation)

N = {o, So, S(So), . . . }

Together this ensures that N is isomorphic to N. Once we know this, the specifi-

cation of the order predicate ≤ does what it is supposed to do since it defines the

function ≤ recursively by a set of terminating, exhaustive and disjoint equations

that are valid in the standard model.

Let R := {o, So, S(So), . . . }. From the types of o and S we know R ⊆ N .

We prove N ⊆ R by contradiction. Let a ∈ N − R. Let f := λn∈N. (n∈R). Then

fo = 1 and ∀(λx.fx → f(Sx)) = 1. Hence fa = 1 by Axiom Ind. Thus a ∈ R by

the definition of f . This is a contradiction.

It remains to show that R is infinite. Once more, we prove this claim by

contradiction. Let m,n ∈ N with n ≥ 1 and Sm+no = Smo, where Sno is the

© G. Smolka 41 2007/7/19

result of the n-fold application of the function S to o. To have unique names, we

use � for the order predicate ≤ of the specification. We obtain a contradiction

as follows:

1 = (Smo � Smo) 3rd and 1st axiom for �

= (Sm+no � Smo) Sm+no = Smo

= (Sno � o) 3rd axiom for �

= 0 2nd axiom for � and n > 0

3.8 Properties of Terms and Specifications

A term is called

• closed if it does not contain a variable.

• a sentence if it is a closed formula.

• equational if it is an equation.

• basic if its type is a sort.

• functional if its type is functional.

• combinatorial if none of its subterms is an abstraction.

• normal if none of its subterms has the form (λx.s)t.

• first-order if none of its subterms is a functional variable.

• modest if it contains only modest names. A name is called modest if its type

has the form A1 → ·· · → An → B where n ≥ 0 and A1, . . . , An and B are sorts.

• pure if it does not depend on a fixed atom.

• stratified if it is pure or an equation s = t where s, t are pure terms.

• algebraic if it is combinatorial, modest, first-order and stratified.

A specification is called closed [equational, combinatorial, normal, first-order,

modest, stratified, algebraic] if all its axioms are closed [equational, combina-

torial, normal, first-order, modest, stratified, algebraic]. Note that stratified and

algebraic specifications are always equational.

Terms and specifications are called higher-order if they are not first-order.

Proposition 3.18 A modest term is combinatorial if it is basic and normal.

Proposition 3.19 If s is obtained from t by βη-reduction, then s contains only

atoms that occur in t.

Proposition 3.20 βη-reduction of a term preserves closedness, modesty, first-

orderness, pureness, stratification, and being licenced by a signature.

© G. Smolka 42 2007/7/19

Proposition 3.21 For every modest and basic term one obtains with βη-

reduction a unique term that is modest, basic and combinatorial.

Proof Follows with Corollary 2.15 and Propositions 3.18 and 3.20. �

The specifications Group and BA are typical examples of algebraic specifica-

tions. The specifications LD, LA and Nat are higher-order specifications.

Exercise 3.22 Say for each axiom of LA whether it is algebraic, stratified, modest,

first-order, combinatorial or higher-order.

© G. Smolka 43 2007/7/19

4 Deduction

Relations “A ⊢ s” saying which formulas are consequences of which specifica-

tions are at the heart of logic. They are called entailment relations. A prominent

example is semantic entailment. Other entailment relations can be obtained with

proof systems, where A ⊢ s means that there is a proof of s from A. In this

chapter we consider proof systems for HOL.

4.1 Entailment Relations

There exists a useful abstract notion of an entailment relation. An entailment

relation on a set X is a set ⊢ ⊆ P(X) ×X such that the following conditions are

satisfied for all A,B ⊆ X and all x ∈ X:

• x ∈ A =⇒ A ⊢ x Expansivity

• A ⊢ x ∧A ⊆ B =⇒ B ⊢ x Monotonicity

• A ⊢ B ∧A∪ B ⊢ x =⇒ A ⊢ x Idempotence

The formulation of the idempotence condition uses the notation

A ⊢ B :⇐⇒ ∀x ∈ B : A ⊢ x

Proposition 4.1 Semantic entailment is an entailment relation on the set of all

formulas.

Once we have an entailment relation, we can strengthen it by means of axioms.

Proposition 4.2 Let ⊢ be an entailment relation on X and A ⊆ X. Then

A
⊢ := { (B, x) | A∪ B ⊢ x }

is an entailment relation on X such that ⊢ ⊆
A
⊢ .

Entailment relations obtained from proof systems have two important prop-

erties that are not satisfied by the semantic entailment relation of HOL. We define

these properties for abstract entailment relations. An entailment relation ⊢ on

X is

• compact if for all A, x such that A ⊢ x there exists a finite set B ⊆ A such

that B ⊢ x.

• effective if X is decidable and the set {x | A ⊢ x } is semi-decidable for every

semi-decidable set A ⊆ X.

Proposition 4.3 Semantic entailment is not compact.

© G. Smolka 44 2007/7/19

Proof Consider the specification Nat of the natural numbers and the set Inf con-

sisting of the equations ¬(a = o), ¬(a = So), ¬(a = S(So)), . . . where a is

some parameter that does not occur in Nat. Then Nat ∪ Inf has no model, but

every finite subset of Nat ∪ Inf has a model. Hence Nat ∪ Inf ⊨ 0, but A 6⊨ 0 for

every finite subset A ⊆ Nat∪ Inf. �

Proposition 4.4 Semantic entailment is not effective.

Proof One can construct a finite specification T such that for every Turing ma-

chine M there is a formula s such that A ⊨ s if and only if M does not terminate

on the empty tape. This is the complement of the halting problem, which is

known to be not semi-decidable. �

Here are some notations for entailment relations (A ⊢ B and A
B
⊢ C were al-

ready defined).

A ⊢ B :⇐⇒ ∀x ∈ B : A ⊢ x

A, B ⊢ x :⇐⇒ A∪ B ⊢ x

A, B ⊢ C :⇐⇒ A∪ B ⊢ C

A,x ⊢ y :⇐⇒ A∪ {x} ⊢ y

x1, . . . , xn ⊢ x :⇐⇒ {x1, . . . , xn} ⊢ x

A ⊢⊣ B :⇐⇒ A ⊢ B ∧ B ⊢ A

A
B
⊢ C :⇐⇒ A,B ⊢ C

A
B
⊢⊣ C :⇐⇒ A

B
⊢ C ∧ C

B
⊢ A

The notion of entailment equivalence that comes with the notation “A ⊢⊣ B”

is useful. We state the properties of ⊢⊣ for an arbitrary entailment relation ⊢.

This also applies to
B
⊢⊣ since

B
⊢⊣ is the entailment eqivalence for the entailment

relation
B
⊢.

Proposition 4.5 Let A ⊢⊣ A′. Then:

1. A ⊢ x ⇐⇒ A′ ⊢ x

2. A,B ⊢ x ⇐⇒ A′, B ⊢ x

3. B ⊢ A ⇐⇒ B ⊢ A′

4.
A
⊢ =

A′

⊢

We call an entailment relation ⊢ sound for an entailment relation ⊢′ if ⊢ ⊆ ⊢′.

© G. Smolka 45 2007/7/19

4.2 Proof Systems

Before we look at a concrete proof system for HOL, we define an abstract notion

of a proof system. Let X be a set. A rule on X is a pair (P, x) such that P is a

finite subset of X and x ∈ X. The elements of P are called the premises of the

rule, and x is called the conclusion of the rule. A proof system on X is a set

of rules on X. A derivation of x ∈ X from A ⊆ X in a proof system S on X is a

tuple (x1, . . . , xn) such that:

1. xn = x

2. ∀i ∈ {1, . . . , n} : xi ∈ A ∨ ∃P ⊆ {x1, . . . , xi−1} : (P, xi) ∈ S.

For every proof system S, we define a relation ⊢S , called the entailment relation

of S:

A ⊢S x :⇐⇒ ∃ derivation of x from A in S

Proposition 4.6 For every proof system S on X the relation ⊢S is a compact

entailment relation on X.

As example we consider the proof system Mul = { ({x,y}, x·y) | x,y ∈ N }

on the set N. The rules of Mul can be described by one schematic rule:

x y

x ·y
x,y ∈ N

Here is a derivation that proves 3,7 ⊢ 189:

1) 3 assumption

2) 7 assumption

3) 9 rule with (1), (1)

4) 21 rule with (1), (2)

5) 189 rule with (3), (4)

Proposition 4.7 Let S be a proof system. Then ⊢S is semi-decidable if X is de-

cidable and S is semi-decidable.

Let ⊢ be an entailment relation on X. We say that a rule (P, x) on X is

• sound for ⊢ if P ⊢ x.

• bidirectionally sound for ⊢ if P ⊢ x and {x} ⊢ y for all y ∈ P .

We say that a schematic rule on X is (bidirectionally) sound for ⊢ if each of its

instances is (bidirectionally) sound for ⊢.

Let ⊢ be an entailment relation on X and S be a proof system on X. We say

that

© G. Smolka 46 2007/7/19

• S is sound for ⊢ if ⊢S ⊆ ⊢.

• S is complete for ⊢ if ⊢ ⊆ ⊢S .

• a rule is subsumed by S if it is sound for ⊢S .

Proposition 4.8 A proof system S on X is sound for an entailment relation ⊢

on X if and only if every rule of S is sound for ⊢.

Proposition 4.9 Let S be a proof system and let S′ be obtained from S by adding

rules that are subsumed by S. Then ⊢S = ⊢S′ .

Let S be a proof system. The closure of a set A with respect to S is defined

as follows:

S[A] = {x | A ⊢S x }

For our example system Mul we have the following:

Mul[0] = 0

Mul[{2}] = {2n | n ∈ N∧n ≥ 1 }

Mul[{3,7}] = {3m · 7n |m,n ∈ N∧m+n ≥ 1 }

Let S be a proof system. We say that a set A is closed under S if for every

rule (P, x) ∈ S: P ⊆ A =⇒ x ∈ A.

Proposition 4.10 (Closure) Let S be a proof system and A, B be sets. Then:

1. A ⊆ B ∧ B closed under S =⇒ S[A] ⊆ B

2. S[A] is the least set that contains A and is closed under S.

3. A closed under S ⇐⇒ S[A] = A

4.3 Replacing Equals with Equals

A basic form of mathematical reasoning is the replacement of equals with equals.

For instance, if we know a = a·b and b = c+a, we may have the following chain

of reasoning:

a = a · b since a = a · b

= a · (c + a) since b = c + a

= (a · b) · (c + a) since a = a · b

We will call this kind of reasoning equational deduction. An important point

about equational deduction is the fact that it is based on syntactic rules rather

than semantic arguments.

© G. Smolka 47 2007/7/19

Here is a schematic rule for formulas that provides a restricted form of re-

placement of equals with equals:

ρ0
s1 = s2 [x:=s1] t

[x:=s2] t
conservative replacement

This rule justifies the replacement steps of our example. Nevertheless, we need

a more general replacement rule. To see this, note that

fx = a h(λx. fx)

h(λx.a)

is not an instance of ρ0 if x is a variable (since substitution does not capture).

However, it is a valid replacement since semantically the variable x is universally

quantified. Hence we will employ a more general replacement rule, which looks

as follows:

ρ
s = t Cs

Ct
replacement

The meta-variable C represents a so-called context, a notion that we will now

define. On an informal basis, we already used general replacement when we

considered reduction (§ 2.4).

We first consider untyped contexts, which are functions Ter → Ter defined

recursively as follows:

1. λs∈Ter . s is a context.

2. If t is a term and C is a context, then λs∈Ter . A(Cs)t is a context.

3. If t is a term and C is a context, then λs∈Ter . At(Cs) is a context.

4. If x is a variable and C is a context, then λs∈Ter . Lx(Cs) is a context.

Proposition 4.11 The composition λs∈Ter . C(C′s) of two contexts C and C′ is a

context.

A context is well-typed if there exists a term s such that Cs is a well-typed

term. Following the general well-typedness convention, we will only write Cs if s

and Cs are well-typed terms.

Combinatorial contexts can be represented as pairs (x, t) consisting of a

name x and a term t in which x occurs exactly once. The application of a context

can then be simulated with substitution. For contexts involving abstractions this

is not the case. Consider for instance C = λs∈Ter . Lxs . Then Cx = Lxx, that is,

the external variable x is captured. But substitution never captures.

Exercise 4.12 Let C = λs∈Ter . λxy.s . Give the following terms:

a) Cx

© G. Smolka 48 2007/7/19

ρ
s = t Cs

Ct
β

(λx.s)t = [x:=t]s
η

λx.sx = s
x ∉N s

Figure 8: Basic deduction rules

b) Cz where x,y ≠ z

c) [z:=y](λxy.z)

Proposition 4.13 Let s = t be an equation, C be a context such that Cs is a

formula, and A be a structure. Then A ⊨ s = t ∧ A ⊨ Cs =⇒ A ⊨ Ct.

Proof By induction on the size of the context C . �

Proposition 4.14 (Soundness) ρ is sound for ⊨ .

Proof Follows from Proposition 4.13. �

Exercise 4.15 Find a example that shows that Proposition 4.13 does not hold if

clause (4) in the definition of contexts would allow x to be a parameter.

4.4 Basic Proof System and Deductive Entailment

A deduction rule is a schematic rule on the set of formulas. Figure 8 shows

three deduction rules ρ, β and η that we will refer to as the basic deduction

rules. They yield a proof system that is sound for semantic entailment. We refer

to this proof system as the basic proof system. We write ⊢ for the entailment

relation of the basic proof system and refer to it as deductive entailment. We

say that a formula s is deducible from a specification A if A ⊢ s.

Proposition 4.16 (Soundness) Deductive entailment is sound for semantic en-

tailment.

Proof It suffices to show that every instance of the rules ρ, β and η is sound

for semantic entailment (Proposition 4.8). This follows for the instances of ρ

with Proposition 4.14, for the instances of β with Proposition 3.8, and for the

instances of η with Exercise 3.9. �

4.5 Subsumed Deduction Rules

The basic proof system defines the deductive entailment relation for HOL. With

the right axioms it allows us to prove whatever we want. However, derivations

© G. Smolka 49 2007/7/19

Ref
s = s

Sym
s = t

t = s
Trans

s = s′ s′ = t

s = t

CL
s = s′

st = s′t
CR

t = t′

st = st′
ξ

s = s′

λx.s = λx.s′
x ∈ Var

Eta
sx = tx

s = t
x ∈ Var −N (s=t) Subst

s = t

θs = θt
Kerθ ⊆ Var

Figure 9: Subsumed deduction rules

in the basic proof system are very low level (like a machine language compared

to a programming language). To arrive at a more comfortable proof system, we

extend the basic proof system with the deduction rules in Figure 9. Since the

additional rules are subsumed by the basic proof sytem, what we can prove does

not change.

Proposition 4.17 (Subsumption) The deduction rules in Figure 9 are sound for

deductive entailment.

First we show that the instances of Ref are subsumed by the basic proof sys-

tem. Let s be a term. Here is a derivation of s = s from 0.

1) (λx.s)x = s β

2) s = s ρ with (1), (1)

The second step is best explained by showing the instance of ρ that is used:

(λx.s)x = s (λx.s)x = s

s = s

The context employed is λt∈Ter . (t = s).

Here is a derivation showing that Sym is subsumed:

1) s = t assumption

2) s = s Ref

3) t = s ρ with (1), (2)

Here is a derivation showing that Trans is subsumed:

1) s = s′ assumption

2) s′ = t assumption

© G. Smolka 50 2007/7/19

3) s = t ρ with (2), (1)

CL, CR, and ξ can be derived with Ref and ρ. Here is a derivation showing that ξ

is subsumed:

1) s = s′ assumption

2) λx.s = λx.s Ref

3) λx.s = λx.s′ ρ with (1), (2)

Note that line (3) is only valid if x is a variable, a requirement imposed by ρ and

the definition of contexts.

Exercise 4.18 Find a derivation that shows that the instances of Eta are sub-

sumed by the basic proof system. You may use Ref, Sym and Trans.

Exercise 4.19 Show that the instances of η are subsumed by the proof sytem

obtained with β and Eta.

Note that the rules β, η, Ref, and Sym are bidirectionally sound. The following

propositions state that is is also true for ξ and Eta.

Proposition 4.20 (Eta) sx = tx ⊢⊣ s = t if x ∈ Var −N (s=t)

Proposition 4.21 (Xi) s = t ⊢⊣ λx.s = λx.t if x ∈ Var

Proposition 4.22 (Weakening) Let s, t be formulas. Then
A
⊢ s=t =⇒ s

A
⊢⊣ t.

The converse of Weakening, s ⊢⊣ t =⇒ ⊢ s=t, does not hold. To see this, let

I = λx.x where x is a variable of type B. Then ⊬ (I = λx.(I=I)) = (x = (I=I))

by soundness. However, I = λx.(I=I) ⊢⊣ x = (I=I) with Eta and β.

Exercise 4.23 Prove s = (I=I) ⊢ s. We conjecture that s ⊢ s = (I=I) does not

hold but don’t have a proof.

Next we show that the special case of Subst where θ = [x:=u] is subsumed.

1) s = t assumption

2) (λx.s)u = [x:=u]s β

3) (λx.t)u = [x:=u]t β

4) (λx.t)u = [x:=u]s ρ with (1), (2)

5) [x:=u]s = [x:=u]t ρ with (4), (3)

© G. Smolka 51 2007/7/19

To show that every instance of Subst is subsumed, more effort is required. The

claim follows with a coincidence argument (Proposition 2.2) from the following

proposition, which generalizes the β-rule to n variables. We use the following

notation:

[x1:=s1, . . . , xn:=sn] := {(x1, s1), . . . , (xn, sn)}

∪ { (x, x) | x ∈ Nam− {x1, . . . , xn} }

Proposition 4.24 (Beta) 0 ⊢ (λx1 . . . xn. t)s1 . . . sn = [x1:=s1, . . . , xn:=sn]t

Proof By induction on n. Case analysis for n = 0 and n > 0. Use induction for

(λx1 . . . xn−1.(λxn.t))s1 . . . sn−1. �

4.6 Conversion

An equation e is

• an instance of an equation s = t if e = (θt = θs) for some substitution θ with

Kerθ ⊆ Var . Here are two instances of x = a: a = a, fx = a.

• an extension of an equation s = t if e = (Cs = Ct) for some context C .

Here are some extensions of x = a: fx = fa, λx.fx = λx.fa, (λx.fx)a =

(λx.fa)a.

• a β-reduction step if it is an extension of an equation that can immediately

be obtained with the β-rule.

• an η-reduction step if it is an extension of an equation that can immediately

be obtained with the η-rule.

• an A-reduction step if it is an extension of an instance of an equation in A.

Proposition 4.25 (Conversion Rules) The following deduction rules are sound

for deductive entailment.

β′
s

t
s = t or t = s is a β-reduction

η′
s

t
s = t or t = s is an η-reduction

ρ′
e s

t
s = t or t = s is a {e}-reduction

The converse of an equation s = t is the equation t = s. An equation is a

conversion step from A if the equation or its converse is a β-, η or A-reduction

step. A conversion proof of an equation e from A is a tuple (s1, . . . , sn) such

that

© G. Smolka 52 2007/7/19

1. n ≥ 1 and e = (s1 = sn).

2. ∀i ∈ {1, . . . , n− 1} : si = si+1 is a conversion step from A.

A conversion proof (s1, . . . , sn) is combinatorial if s1, . . . , sn are combinatorial.

We say that two formulas s, t are convertible in A if there is a conversion proof

of s = t from A.

Example 4.26 Let A be the specification

I : V → V

K : V → V → V

S : (V → V → V)→ (V → V)→ V → V

Ix = x I

Kxy = x K

Sfgx = fx(gx) S

where I, K, S are constants and x, y , f , g are variables. Here is a conversion

proof of SKI = I from A:

SKI = λx. SKIx η

= λx. Kx(Ix) S

= λx. x K

= λx. Ix I

= I η

It seems that there is no combinatorial conversion proof of SKI = I from A.

Since A is combinatorial, this demonstrates that abstractions are essential for

deductive entailment. �

Proposition 4.27 (Lifting) If s = t is a conversion step from A, then Cs = Ct is a

conversion step from A. Moreover, if there is a conversion proof of s = t from A,

then there is a conversion proof of Cs = Ct from A.

Proof Follows from the fact that an extension of an extension of an equation e

is an extension of e. �

A specification is called equational if all its axioms are equations. Note that

stratified and algebraic specifications are equational. We define conversion en-

tailment as follows:

A ⊢con s = t :⇐⇒ A equational and s, t are convertible in A

Proposition 4.28 Conversion entailment is a compact entailment relation that is

sound for deductive entailment: ⊢con ⊆ ⊢ .

© G. Smolka 53 2007/7/19

5 Propositional Logic

Logics restricted to the sort B and the Boolean connectives are usually called

propositional logics. Traditional accounts of propositional logic restrict them-

selves to formulas that are combinatorial and first-order. We will not impose

such restrictions. What we will consider in this chapter we call higher-order

propositional logic to distinguish it from the usually considered subsystem that

we call first-order propositional logic. You’ll find a nice presentation of the his-

tory of first-order propositional logic at www.iep.utm.edu/p/prop-log.htm#H2.

Semantically equivalent specifications (i.e., A⊨ôB) are usually not deductively

equivalent (i.e., A 6⊢⊣ B). As example, take the empty specification 0 and Sym =

{(x=y) = (y=x)} where x, y are variables of type B. Semantically, 0 and Sym

are equivalent. Deductively, they don’t seem to be equivalent since there doesn’t

seem to be a proof of (x=y) = (y=x) from 0.

In this chapter we will study the deductive aspects of a higher-order speci-

fication PL that specifies the Boolean connectives such that a strong deductive

entailment relation is obtained. A semantically equivalent first-order specifica-

tion looks as follows:

(1 = 1) = 1 ¬x = x → 0

0 → x = 1 x ∨y = (x → y) → y

1 → x = x x ∧y = ¬(¬x ∨¬y)

Deductively, the first-order specification is much weaker than the higher-order

specification PL. For instance, (0 = 1) = 0 does not seem to be deducible in the

first-order specification.

5.1 Specification PL

Figure 10 shows the specification PL we will explore in this chapter. It distin-

guishes between the primary constants 0, 1, → and the defined constants ¬, ∨,

∧, which can be expressed with the primary constants. In addition, the specifi-

cation use the logical constant ≐B (Boolean identity). Except for BCA, all axioms

are first-order. The axiom E0 is semantically redundant.

Proposition 5.1 PL has exactly one model. This model gives PL’s constants their

canonical meaning.

Proof Follows with the arguments used in the discussion of LA in § 3.6. �

The next two propositions are straightforward consequences of E1.

Proposition 5.2 (One) PL ⊢ 1

© G. Smolka 54 2007/7/19

Specification PL

Primary Constants 0,1 : B

→ : B → B → B

Axioms (x = 1) = x E1

(1 = 0) = 0 E0

1→ x = x I1

f0 → f1 → fx BCA (Boolean case analysis)

Defined Constants ¬x = x → 0

x ∨y = (x → y) → y

x ∧y = ¬(¬x ∨¬y)

Notation x := ¬x

Figure 10: Specification of propositional logic

Proposition 5.3 (Up and Down) s=1
PL
⊢⊣ s

The direction s=1
PL
⊢ s is called Up, the other direction is called Down.

Proposition 5.4 (Subst’) s
PL
⊢ θs if Kerθ ⊆ Var

Proof Follows with E1 and Subst. �

Proposition 5.5 (MP: Modus Ponens) s → t, s
PL
⊢ t

Proof Follows with Down and I1. �

Proposition 5.6 (I0) PL ⊢ 0→ x = 1

Proof The claim follows with the following conversion proof, which uses the

equational version of the axiom BCA obtainable with Down.

1 = (λx.x)0 → (λx.x)1 → (λx.x)x BCA, Down

= 0 → 1 → x β

= 0 → x I1 �

Proposition 5.7 (Exx) PL ⊢ (x=x) = 1

Proof Follows with Ref and Down. �

© G. Smolka 55 2007/7/19

Proposition 5.8 (BCA) PL ⊢ [x:=0]s → [x:=1]s → s.

Proof Follows with BCA, Subst’ (f := λx.s) and β. �

Proposition 5.9 (BCA) [x:=0]s, [x:=1]s
PL
⊢⊣ s

Proof The direction from left to right follows with MP from the preceding propo-

sition. The other direction follows with Subst’. �

A zero-one instance of a formula s is a formula θs such that:

1. θx ≠ x =⇒ x : B∧ θx ∈ {0,1}

2. θs contains no variables of type B.

Proposition 5.10 (Enumeration) A formula is deducible from PL if and only if all

its zero-one instances are deducible from PL.

Proof One direction follows by Subst. To show the other direction, let s be a

formula such that every zero-one instance of s is deducible from PL. We show

that s is deducible from PL by induction on the number of variables of type B

occurring in s.

If s contains no such variable, s is a zero-one instance of s and the claim

follows by assumption.

If s contains a variable x : B, all zero-one instances of [x := 0]s and [x := 1]s

are zero-one instances of s. Hence we know by induction that [x := 0]s and

[x := 1]s are deducible from PL. Thus we know by BCA that s is deducible from

PL. �

Proposition 5.11 (Equiv) PL ⊢ (x=y) = (x → y)∧ (y → x).

Proof By Enumeration it suffices to show that the zero-one instances of the equa-

tion are deducible in PL. Here they are:

(0=0) = (0→ 0)∧ (0 → 0) (1=1) = (1 → 1)∧ (1 → 1)

(0=1) = (0→ 1)∧ (1 → 0) (1=0) = (1 → 0)∧ (0 → 1)

We give a conversion proof of the last equation:

(1 → 0)∧ (0 → 1) = 0∧ 1 I1, I0

= ¬(¬0∨¬1) Definition ∧

= ¬((¬0 → ¬1)→ ¬1) Definition ∨

= (((0 → 0)→ (1 → 0)) → (1 → 0))→ 0 Definition ¬

= ((1 → 0)→ 0)→ 0 I0, I1, I1

© G. Smolka 56 2007/7/19

Up
s = 1

s
Down

s

s = 1
Subst’

s

θs
Kerθ ⊆ Var

MP
s → t s

t
BCA

[x:=0]s [x:=1]s

s

Equiv
s → t t → s

s = t

Figure 11: Sound deduction rules for
PL
⊢

= (0→ 0)→ 0 I1

= 1→ 0 I0

= 0 I1

= (1=0) E0

The deducibility of the other equations follows with similar conversion proofs.�

Figure 11 shows some deduction rules whose soundness for
PL
⊢ follows with

the preceding propositions. Note that the rules Up, Down, BCA and Equiv are

bidirectionally sound.

5.2 Tautological Completeness

A formula is called

• propositional if it is combinatorial and contains no other names but 0, 1, →,

≐B, ¬, ∨, ∧, and variables of type B.

• a tautology if it is propositional and semantically entailed by PL.

• tautologous if it is an instance of a tautology.

We use TL to denote the set of all tautologies. We will show: PL ⊢⊣ TL∪ {BCA} .

Figures 12, 13 and 14 show the most important tautologies.

Proposition 5.12 (Base) For every propositional formula s there exists a propo-

sitional formula t such that PL ⊢ s = t and t contains no other names but 0

and → and variables that occur in s.

Proof Follows with a conversion proof from: Equiv; the defining equations for

∧, ∨, ¬; and 1 = (0 → 0) (the converse of an instance of I0). �

© G. Smolka 57 2007/7/19

0→ x = 1 x → 0 = x x → x = 1

1→ x = x x → 1 = 1

x → y → z = y → x → z Commutativity

x → x → y = x → y

x → y → z = x ∧y → z Schönfinkel

x ∧ (x → y) = x ∧y Modus ponens

x ∨ y → z = (x → z)∧ (y → z) Distributivity

x → y ∧ z = (x → y)∧ (x → z) Distributivity

x ∧ y → z = x → y ∨ z Trading

x → y ∨ z = x ∧ z → y Trading

x → y = y → x Contraposition

x → y = x ∨y

x → y = (x = x ∧y) Golden Rule

x → y = (y = x ∨ y) Golden Rule

x ∨y = (x → y)→ y

x ∧y → x Triviality

x → x ∨y Triviality

x ∧y → x ∨ z Triviality

(x → y) → x ∧ z → y ∧ z Monotonicity

(x → y) → x ∨ z → y ∨ z Monotonicity

(x → y) → (x ∧ x′ → y) Weakening

(x → y) → (x → y ∨y′) Weakening

x ∨y → (z = (x → z)∧ (y → z)) Case Analysis(CA)

z = (x → z)∧ (x → z)

(x → y)∧ (x → z) = x ∧ y ∨ x ∧ z Conditional

(x → y)∧ (x → z) = (x ∨ z)∧ (x ∨y)

((x → y) → x)→ x Peirce

Figure 12: Tautologies for →

© G. Smolka 58 2007/7/19

(x = 0) = x (x = 1) = x

(x = x) = 1 (x = x) = 0

(x = y) = (y = x) Symmetry

(x = (y = z)) = ((x = y) = z) Associativity

x = y = (x = y) De Morgan

x = x Double Negation

(x = y) = (x = y) Contraposition

(x = y) = (x → y)∧ (y → x) Equiv

(x = y) = (x ∧ y)∨ (x ∧y)

(x = y) = (x ∨ y)∧ (x ∨y)

(x = y) = (x ∨ y)∧ x ∧ y Uniqueness of Complements

Figure 13: Tautologies for =

0∧ x = 0 1∨ x = 1 Dominance

1∧ x = x 0∨ x = x Identity

x ∧ x = x x ∨ x = x Idempotence

x ∧ x = 0 x ∨ x = 1 Complement

x ∧y = y ∧ x x ∨y = y ∨ x Commutativity

x ∧ (y ∧ z) = (x ∧y)∧ z x ∨ (y ∨ z) = (x ∨y)∨ z Associativity

x ∧ (x ∨ y) = x x ∨ (x ∧y) = x Absorption

x ∧y = x ∨ y x ∨y = x ∧y DeMorgan

x ∧ (y ∨ z) = (x ∧y)∨ (x ∧ z) Distributivity

x ∨ (y ∧ z) = (x ∨y)∧ (x ∨ z) Distributivity

(x ∧y)∨ (x ∧ z) = (x ∧y)∨ (x ∧ z)∨ (y ∧ z) Resolution

(x ∨y)∧ (x ∨ z) = (x ∨y)∧ (x ∨ z)∧ (y ∨ z) Resolution

Figure 14: Tautologies for ∧ and ∨

© G. Smolka 59 2007/7/19

Proposition 5.13 For every propositional formula s containing no other names

but 0, 1, and → : PL ⊢ s=0 or PL ⊢ s=1.

Proof By induction on |s|. If s = 0 or s = 1, the claim follows by Ref. If s =

s1 → s2, we use induction for s1. If PL ⊢ s1=0, then PL ⊢ s=1 with I0. If PL ⊢ s1=1,

then PL ⊢ s=s2 with I1. Hence the claim follows with induction for s2. �

Proposition 5.14 (0-1)

For every closed propositional formula s: PL ⊢ s=0 or PL ⊢ s=1.

Proof Follows with Propositions 5.12 and 5.13. �

Proposition 5.15 (Tautological Completeness) Every tautologous formula is de-

ducible from PL.

Proof By Subst’ it suffices to show that tautologies are deducible in PL. By Enu-

meration and Soundness it suffices to show that closed tautologies are deducible

in PL. This holds by Proposition 5.14 and Soundness. �

Note that the proofs of the preceding propositions suggest a straightforward

procedure that decides whether a propositional formula is a tautology. The run

time of this procedure is exponential in the number of variables the formula

contains. This is no surprise since deciding whether a propositional formula is

not a tautology is known to be NP-complete.

Provided one knows enough tautologies, tautological completeness makes it

much easier to establish deductive consequences of PL. The following proposi-

tions say why this is the case.

Proposition 5.16 (Taut) PL ⊢⊣ TL∪ {BCA}

Proposition 5.17 The following rule is sound for
PL
⊢ :

Taut
s

s tautologous

Proposition 5.18 PL ⊢ s if there exists a derivation of s from {BCA} using Taut

and the deduction rules from Proposition 4.25 and Figures 8, 9 and 11.

Proposition 5.19 PL ⊢ s if there exists a conversion proof of s from equational

tautologies.

Exercise 5.20 Given what we already know, the proofs of the propositions 5.16–

5.19 are straightforward. Make sure that you can do them and that you under-

stand every detail.

© G. Smolka 60 2007/7/19

Proposition 5.21 (And) s ∧ t
PL
⊢⊣ s, t

Proof The direction from left to right follows with Taut and MP using the tau-

tologies x ∧ y → x and x ∧y → y . The direction from right to left follows with

Down and the tautology 1∧ 1. �

To sketch an algorithm that decides whether a formula is tautologous, we

need two definitions. A term s is a generalization of a term t if t is an instance

of s. A term s is more specific than a term t if s is an instance of t. To de-

cide whether a formula is tautologous, we compute a most specific propositional

generalization of the formula and check whether it is a tautology. The following

proposition ensures the correctness of this simple algorithm.

Proposition 5.22 For every formula s the following statements are equivalent:

1. s is tautologous.

2. s has a propositional generalization that is a tautology.

3. s has a most specific propositional generalization that is a tautology.

4. Every most specific propositional generalization of s is a tautology.

5.3 BCA Equivalents

We know PL ⊢⊣ TL ∪ {BCA}. This means that BCA takes a prominent position

in PL. There are several interesting higher-order formulas that are deductively

equivalent to BCA, provided the tautologies are available.

Proposition 5.23 Let f : B → B and x,y : B be variables. Then the following

formulas are deducible from PL and are equivalent with respect to
TL
⊢ :

1. f0 → f1 → fx Boolean Case Analysis (BCA)

2. (x = y) → fx = (x = y)→ fy Boolean Replacement (BRep)

3. fx = x ∧ f0∨ x ∧ f1 Boolean Expansion (BExp)

Proof Since PL ⊢⊣ TL∪{BCA}, it suffices to show that the formulas are equivalent

with respect to
TL
⊢ .

(1) =⇒ (2). Since we have TL and BCA, it suffices to prove (2) from PL. Since the

zero-one instances of (2) are tautologous, (2) follows with Enumeration and Taut.

(2) =⇒ (3) follows with a conversion proof:

fx = (x = 0)→ fx ∧ (x = 1)→ fx TL

= (x = 0)→ f0∧ (x = 1)→ f1 (2) twice

= x ∧ f0∨ x ∧ f1 TL

© G. Smolka 61 2007/7/19

(3) =⇒ (1) follows with a conversion proof and Up:

f0 → f1 → fx = f0 → f1 → x ∧ f0∨ x ∧ f1 (3)

= 1 TL �

Proposition 5.24 (Boolean Replacement) Let f : B → B be a variable. Then the

following formulas are deducible from PL and are equivalent with respect to
TL
⊢ :

1. (x = y) → fx → fy

2. (x = y) → (fx = fy)

3. (x = y) → fx = (x = y)→ fy

4. (x = y)∧ fx = (x = y)∧ fy

Proof Since we know by Proposition 5.23 that (3) is deducible from PL, it suffices

to show that the formulas are equivalent with respect to
TL
⊢ . Since the formulas

(2) → (3), (3) = (4) and (3) → (1) are tautologous, it suffices to show that

TL, (1) ⊢ (2).

(x = y) → (fx = fy)

= (x = y)→ (fx = fx) → (fx = fy) TL

= (x = y)→ (λy.fx = fy)x → (λy.fx = fy)y β

= 1 (1) �

5.4 Hypothetical Conversion Proofs

Boolean replacement provides for conservative replacement within formulas:

PL ⊢ (s1 = s2) → [x:=s1] t = (s1 = s2) → [x:=s2] t

When we prove that a formal proof for a formula exists, it it is often convenient

to perform internal replacements as external conversions. To this end, we define

hypothetical conversion proofs, which may involve general replacement steps

with respect to a set of axioms and conservative replacement steps with respect

to a set of hypotheses.

A context C is conservative for an equation s1 = s2 if there exist a variable x

and a term t such that Cs1 = [x:=s1] t and Cs2 = [x:=s2] t. An equation e is a

conservative A-reduction step if there exist an equation (s=t) ∈ A and a con-

text C that is conservative for s = t such that e = (Cs=Ct). An equation is a

conversion step from A with H if the equation or its converse is one of the

© G. Smolka 62 2007/7/19

following: a β-reduction step, an η-reduction step, an A-reduction step, or a

conservative H-reduction step.

Let A and H be sets of equations and e an equation. A conversion proof of e

from axioms A with hypotheses H is a tuple (s1, . . . , sn) such that

1. n ≥ 1 and e = (s1 = sn).

2. ∀i ∈ {1, . . . , n− 1} : si = si+1 is a conversion step from A with H.

Proposition 5.25 (Lifting) Suppose there exists a conversion proof of s = t from

A with H. Then there exists a conversion proof of Cs = Ct from A with H if C is

a context that is conservative for every equation in H.

A Boolean equation is an equation s = t where s and t are formulas.

Lemma 5.26 Suppose A contains BRep and there is a conversion proof of t = t′

from A with H ∪ {s} where s is a Boolean equation. Then there is a conversion

proof of s → t = s → t′ from A with H.

Proof By induction on the length n of the conversion proof of t = t′. If n = 1,

then t = t′ and hence there is a conversion proof of s → t = s → t′ of length 1.

Let n ≥ 2. Then there is a term t′′ such that t = t′′ is a conversion step from A

withH∪{s} and there is conversion proof of t′′ = t′ from AwithH∪{s} of length

n− 1. By induction we know that there is a conversion proof of s → t′′ = s → t′

from A with H. Hence it suffices to show that there exists a conversion proof of

s → t = s → t′′ from A with H.

If t = t′′ is a conversion step from A with H, then the claim follows by Lifting

(there is no problem with conservative H-steps since the required lifting does

not capture). Otherwise either t = t′′ or t′′ = t is a conservative {s}-reduction.

Let t = t′′ be a a conservative {s}-reduction. Let s = (s1 = s2), t = [x:=s1]u,

and t′′ = [x:=s1]u. Here is a conversion proof of s → t = s → t′′ from {BRep}:

s → t = (s1 = s2)→ [x:=s1]u Notation

= (s1 = s2)→ (λx.u)s1 β

= (s1 = s2)→ (λx.u)s2 BRep

= (s1 = s2)→ [x:=s2]u β

= s → t′′ Notation

Let t′′ = t be a a conservative {s}-reduction. Then the claim follows analo-

gously to the previous case since from a conversion proof of s → t′′ = s → t from

{BRep} we can obtain a conversion proof of s → t = s → t′′ from {BRep}. �

© G. Smolka 63 2007/7/19

Proposition 5.27 (Boolean Deductivity) A ⊢ s1 → ·· · → sn → s holds if the

following conditions are satisfied:

1. A ⊢ PL and s1, . . . , sn are Boolean equations.

2. there is a conversion proof of s from A with {s1, . . . , sn}.

The proof of the next proposition demonstrates the use of Boolean Deductivity.

Proposition 5.28 (BExt: Boolean Extensionality) Let f , g : B → B. Then:

PL ⊢ (f0 = g0)∧ (f1 = g1)→ (f = g)

Proof Here is a conversion proof of f = g from Bexp with f0 = g0 and f1 = g1:

f = λx. fx η

= λx.x ∧ f0∨ x ∧ f1 BExp

= λx.x ∧ g0∨ x ∧ g1 Hyp f0 = g0, f1 = g1

= λx. gx BExp

= g η

Since BExp is deducible from PL, we know by Boolean Deductivity that

(f0 = g0)→ (f1 = g1)→ (f = g) is deducible from PL. Now we obtain the claim

with the Schönfinkel tautology. �

Semantically, it is clear that Deductivity should hold for all equational hy-

potheses, not just Boolean equations. However, so far we lack replacement ax-

ioms for non-Boolean identities. Since we don’t have adequate tools for showing

that semantically entailed formulas are not deducible from PL, we will be content

with the formulation of a conjecture:

Conjecture 5.29 Let f , g : B → B be distinct variables. Then the formula

(f = g)→ (f0 = g0) is not deducible from PL.

The next proposition says that there are exactly 4 functions B → B: identity,

the two constant functions, and negation. The proof of this claim demonstrates

the use of BExt and the monotonicity tautology for disjunction.

Proposition 5.30 (Case Analysis for B → B)

PL ⊢ (f = λx.x)∨ (f = λx.0)∨ (f = λx.1)∨ (f = ¬)

Proof By BExt and TL (in particular the Monotonicity tautology for ∨) we know

that it suffices to prove that

© G. Smolka 64 2007/7/19

(f0 = (λx.x)0) ∧ (f1 = (λx.x)1)

∨ (f0 = (λx.0)0)∧ (f1 = (λx.0)1)

∨ (f0 = (λx.1)0)∧ (f1 = (λx.1)1)

∨ (f0 = ¬0)∧ (f1 = ¬1)

is deducible from PL. By β and TL we know that this formula is deductively

equivalent to

(f0 = 0)∧ (f1 = 1)

∨ (f0 = 0)∧ (f1 = 0)

∨ (f0 = 1)∧ (f1 = 1)

∨ (f0 = 1)∧ (f1 = 0)

Since this formula is tautologous, we are done. �

5.5 Case Analysis

We want to prove PL ⊢ f(f(fx)) = fx. Semantically, PL entails f(f(fx)) = fx

since each of the 4 functions B → B satisfies the equation. Deductively, we

could prove the claim from Proposition 5.30 if we had a replacement axiom

(f = g)→ hf = hg. Since we don’t have such an axiom, we will construct a

more straigtforward proof based on case analysis.

By BCA we know that f(f(fx)) = fx is deducible from PL if and only if its

zero-one instances f(f(f1)) = f1 and f(f(f0)) = f0 are deducible from PL. We

prove the first claim and leave the second as an exercise. We base the proof on a

case analysis provided by the tautology CA: x ∨y → (z = (x → z)∧ (y → z)).

Proposition 5.31 PL ⊢ f(f(f1)) = f1

Proof By case analysis with CA.

Case f1 = 0, f0 = 0. Then f(f(f1)) = f(f0)) = f0 = 0 = f1 is a conver-

sion proof from 0 with f1 = 0, f0 = 0. Hence the claim follows with Boolean

deductivity and Up.

Case f1 = 0, f0 = 1. Then f(f(f1)) = f(f0)) = f1.

Case f1 = 1. Then f(f(f1)) = f(f1)) = f1. �

The essential steps of the proof can be shown with a tree diagram:

© G. Smolka 65 2007/7/19

f1

f0

f(f(f1))

= f(f0)

= f0

= 0

= f1

f(f(f1))

= f(f(0))

= f1

f(f(f1))

= f(f1)

= f1

© G. Smolka 66 2007/7/19

6 Higher-Order Propositional Completeness

This chapter was contributed by Mark Kaminski and is based on his Master’s

Thesis (2006).

Given a set of terms Γ , a specification A is called deductively complete on Γ

(Γ -complete) if for every formula t ∈ Γ : A ⊨ t =⇒ A ⊢ t.

The first completeness result for higher-order propositional logic was ob-

tained by Leon Henkin in 1963. Henkin worked within a framework based on

a countably infinite set of axioms. We, on the other hand, will focus our atten-

tion on PL, which is clearly finite. In the following, we will identify an expressive

class of formulas on which PL is deductively complete.

As we already know, PL has exactly one model. We call this model T . T

uniquely determines the extension of all types and closed terms that are licensed

by PL. It is sometimes convenient to be able to refer to these extensions without

first having to construct an interpretation I ⊇ T .

Given a structure A, we define Â as the smallest function such that:

1. ∀T : T licensed by A =⇒ ∃I ⊇ A : ÂT = IT

2. ∀t : t closed and licensed by A =⇒ ∃I ⊇ A : Ât = Ît

By Proposition 3.7, Â is uniquely determined for every structure A, and sat-

isfies the following corollary.

Corollary 6.1 For every structure A and every interpretation I ⊇ A:

1. ∀T : T licensed by A =⇒ IT = ÂT

2. ∀t : t closed and licensed by A =⇒ Ît = Ât

6.1 Denotational Completeness

Unfortunately, for formulas containing higher-order identities PL seems to be

incomplete without additional axioms. Luckily, higher-order identities do not in-

crease the semantic expressiveness of our language in T . Every formula contain-

ing higher-order identities can be equivalently reformulated using only Boolean

parameters and, optionally, identity on B. Let us now make this claim formal.

A set of terms Γ is called denotationally complete with respect to a structure

A if for every type T licensed byA and every value v ∈ ÂT there exists a closed

term t ∈ Γ such that Ât = v . We call t a reification of v in Γ with respect to A.

Given a specification A, we define ∆A to be the set of all terms licensed by A

and containing no other parameters but those in NA. We claim: ∆PL is denota-

tionally complete with respect to T .

Since we will have to deal with very large terms, it is useful to introduce

some abbreviating notation. Figure 15 summarizes the new abbreviations and

© G. Smolka 67 2007/7/19

↑T1→...→Tn→B v := λx1 . . . xn.
∨

wi∈T̂ Ti
vw1...wn

∧

1≤j≤n

xj ≈Tj (↑Tj wj) D↑

∀T := λf .
∧

v∈T̂ T

f(↑T v) D∀

≈B := ≐B D≈

≈S→T := λfg.∀S x.fx ≈T gx D≈

Figure 15: Derived notation for PL

introduces names by which these can be referred to later. The definitions range

over all types licensed by PL. As we will see shortly, a term of the form ↑Tv ,

where v ∈ T̂ T , is a reification of v . Hence ↑ is called a reification operator. ∀T

and ≈T denote the universal quantification over T and the identity predicate on

T , respectively.

To convince oneself that the definition of ↑ covers all types licensed by PL,

the following proposition is useful.

Proposition 6.2 For every type T there exist types T1, . . . , Tn and a sort S such

that T = T1 → . . .→ Tn → S.

Proof Exercise. �

When there is no danger of confusion, we will usually omit type annotations

from ↑v , ∀, and ≈. In case the type cannot be uniquely inferred from the con-

text, the abbreviated notation implicitly assumes universal quantification of the

context over all types licensed by PL.

Example 6.3

• ↑0 =
∨

0

1 = 0, ↑1 = 1

• ↑(λv ∈ B.1) = λx.x ≐B 0∨ x ≐B 1

• ↑(λv ∈ B.λw ∈ B.v ⇒ w)

= λxy.x ≐B 0∧ y ≐B 0∨ x ≐B 0∧y ≐B 1∨ x ≐B 1∧y ≐B 1

• ∀Bf = f0∧ f1

• f ≈B→B g = f0 ≐B g0∧ f1 ≐B g1 �

Proposition 6.4 ↑v , ∀, and ≈ are closed.

© G. Smolka 68 2007/7/19

Proof By mutual induction on types. Exercise. �

Proposition 6.5 (Soundness)

1. T̂ (↑v) = v

2. T̂ ∀Tv = (v = λw ∈ T̂ T .1)

3. T̂ (≈)vw = (v = w)

Proof By mutual induction on types. �

Corollary 6.6 ∆PL is denotationally complete with respect to T .

6.2 Definitional Extensions

Recall: θ(≐T) = (≐T) for every θ and every T .

We call a substitution θ stable if ∀x ∈ Kerθ : x ∈ Par ∧ θx closed.

Proposition 6.7 (Stability) If θ stable, then:

1. A ⊨ s =⇒ θA ⊨ θs

2. A ⊢ s =⇒ θA ⊢ θs

A function f is called idempotent if f(fx) = fx for every argument x.

Aθ := {x = θx | x ∈ Kerθ }

An equation is called trivial if it has the form s = s.

Proposition 6.8 θ idempotent if and only if every equation in θ(Aθ) is trivial.

Let A be a specification. A substitution θ is called a definitional extension

of A if θ is stable and idempotent, and satisfies θA = A. A specification B

is called a definitional extension of A if B
A
⊢⊣ Aθ such that θ is a definitional

extension of A.

Example 6.9

• PL− {E1, E0, I1,BCA} is a definitional extension of {E1, E0, I1,BCA}.

• {x ↔ y = (x → y)∧ (y → x)} is a definitional extension of PL. �

Proposition 6.10 Let θ be a definitional extension of A and θt = t. Then:

1. A∪Aθ ⊨ t ⇐⇒ A ⊨ t

2. A∪Aθ ⊢ t ⇐⇒ A ⊢ t

© G. Smolka 69 2007/7/19

Proof Follows with Stability and Proposition 6.8. �

Proposition 6.11 Let θ be a definitional extension of A and ∀t ∈ Γ : θt = t.

Then A is Γ -complete if and only if A∪Aθ is Γ -complete.

Proof Follows from Proposition 6.10 �

By Proposition 6.11, to prove a specification A Γ -complete, it suffices to show

Γ -completeness of any definitional extension θ of A such that θΓ = Γ . On the

other hand, knowing that a specification A is Γ -complete, we immediately obtain

completeness results for all of its definitional extensions that leave Γ invariant.

If we interpret ↑v , ∀, and ≈ not as notational abbreviations but as defined

constants, one can show that the defining equations as given in Figure 15 form

a definitional extension of PL. Hence we know by Proposition 6.11 that PL is ∆PL-

complete if and only if deductive completeness on ∆PL holds in the extended

system.

Assuming a specification A is Γ -complete, we can naturally extend Γ while

preserving deductive completeness of A as stated by the following proposition.

Proposition 6.12 A specification A is Γ -complete if and only if it is deductively

complete on {s | ∃t ∈ Γ : A ⊢ s = t}.

Proof Exercise. �

Corollary 6.13 PL is ∆PL-complete if and only if it is ∆{E1,E0,I1,BCA}-complete.

Proposition 6.14 PL is ∆PL-complete if and only if {E1, E0, I1,BCA} is

∆{E1,E0,I1,BCA}-complete.

Proof By Corollary 6.13, is suffices to show that PL is ∆{E1,E0,I1,BCA}-complete if

and only if {E1, E0, I1,BCA} is ∆{E1,E0,I1,BCA}-complete. This is the case by Propo-

sition 6.11. �

6.3 Deductive Completeness

Proposition 6.15 Let X,Y be finite sets. Then

TL ⊢
∧

x∈X

∨

y∈Y

fxy =
∨

g∈X→Y

∧

x∈X

fx(gx)

Proof By induction on |X|. �

Example 6.16 Let X = Y = {0,1}, and let fxy = txy . Then

(t00 ∨ t01)∧ (t10 ∨ t11) = (t00 ∧ t10)∨ (t00 ∧ t11)∨ (t01 ∧ t10)∨ (t01 ∧ t11) �

© G. Smolka 70 2007/7/19

Corollary 6.17 TL ⊢
∨

x∈X

sx ∧ t =

∨

x∈X

sx

∧ t

Proposition 6.18 Every closed, β-normal formula t ∈ ∆PL is propositional.

Proof By induction on |t|. Since abstractions have functional types, t cannot be

of the form λx.s. The remaining cases are:

Case t ∈ Nam. Since t is closed, t ∉ Var . Since t ∈ ∆PL and t : B, it must be either

0 or 1.

Case t = t1t2 . . . tn where n ≥ 2 and t1 not an application. Since t is β-normal, t1

is not of the form λx.s. And since t is closed, t1 is not a variable. Consequently,

t1 is either→,¬,∧, or ∨. In either case t2, . . . , tn must be closed, β-normal formu-

las. By induction for t2, . . . , tn, they are propositional. Hence t is propositional.�

Proposition 6.19 If t ∈ ∆PL is closed, then: PL ⊨ t =⇒ PL ⊢ t.

Proof Assume PL ⊨ t, and let s be the β-normal form of t. By Proposition 2.13,

s : B. By Proposition 3.19, s is closed and s ∈ ∆PL. Hence, by Proposition 6.18, s is

propositional. So, by assumption, s is a tautology. By Tautological Completeness

(Proposition 5.15), PL ⊢ s. Hence PL ⊢ t. �

Proposition 6.20 PL is ∆PL-complete if and only if ∀Tf → fx is deducible from

PL for every type T licensed by PL.

Proof

“ =⇒” Since, by Soundness (Proposition 6.5), PL ⊨ ∀f → fx, the formula is

deducible from PL by the completeness assumption.

“⇐= ” Assume PL ⊢ ∀f → fx and, for some formula t ∈ ∆PL, PL ⊨ t. To show:

PL ⊢ t. Let {x1, . . . , xn} be the variables that occur in t. By Soundness (Propo-

sition 6.5), PL ⊨ ∀x1 . . .∀xn.t. By Proposition 6.4, ∀x1 . . .∀xn.t is closed.

Hence, by Proposition 6.19, PL ⊢ ∀x1 . . .∀xn.t. By n successive applications

of the assumption and Modus Ponens, we obtain PL ⊢ t. �

So, in order to prove PL ∆PL-complete, it suffices to show PL ⊢ ∀Tf → fx for

every type T licensed by PL.

Proposition 6.21 PL ⊢ x ≈T x

Proof By induction on T . �

Proposition 6.22 PL ⊢ (↑T1→T2v)(↑T1 w) = (↑T2(vw))

© G. Smolka 71 2007/7/19

Proof We prove

1. If T = T1 → T2, then PL ⊢ (↑T1→T2v)(↑T1 w) = (↑T2(vw)).

2. If v,w ∈ T̂ T are disjoint, then PL ⊢ (↑Tv) ≈T (↑Tw) = 0.

by mutual induction on T .

Case T = B. (1) holds vacuously. For (2) it suffices to check that both (0 = 1) = 0

and (1 = 0) = 0 are tautologous.

Case T = T1 → T2 where T2 = T21 → . . .→ T2n → B.

1. By D↑ and β, we have

(↑T1→T21→...→T2n→Bv)(↑T1w)

=

λx1x21 . . . x2n.
∨

ui∈T̂ Ti
vu1u21...u2n

x1 ≈T1 (↑T1u1)∧
∧

1≤j≤n

x2j ≈T2j (↑T2ju2j)

(↑T1w)

= λx21 . . . x2n.
∨

ui∈T̂ Ti
vu1u21...u2n

(↑T1w) ≈T1 (↑T1u1)∧
∧

1≤j≤n

x2j ≈T2j (↑T2ju2j)

By Proposition 6.21 and induction for T1 (2), respectively, we know:

• PL ⊢ (↑T1w) ≈T1 (↑T1w) = 1

• PL ⊢ (↑T1w) ≈T1 (↑T1u1) = 0 if u1 6= w

Hence

λx21 . . . x2n.
∨

ui∈T̂ Ti
vu1u21...u2n

(↑T1w) ≈T1 (↑T1u1)∧
∧

1≤j≤n

x2j ≈T2j (↑T2ju2j)

= λx21 . . . x2n.
∨

ui∈T̂ Ti
vwu21...u2n

∧

1≤j≤n

x2j ≈T2j (↑T2ju2j)

= (↑T21→...→T2n(vw))

2. Let v,w ∈ T̂ T be distinct. Then there exists u ∈ T̂ T1 such that vu,wu are

distinct. Thus, by induction for T2, PL ⊢ (↑T2(vu)) ≈T2 (↑T2(wu)) = 0. By (1),

this is equivalent to PL ⊢ (↑Tv)(↑T1u) ≈T2 (↑Tw)(↑T1u) = 0. Hence

0 =
∧

u∈T̂ T1

(↑Tv)(↑T1u) ≈T2 (↑Tw)(↑T1u) TL

= ∀T1x.(↑Tv)x ≈T2 (↑Tw)x D∀

= (↑Tv) ≈T (↑Tw) D≈ �

© G. Smolka 72 2007/7/19

Proposition 6.23 (Enum) PL ⊢
∨

v∈T̂ T

x≈(↑v)

Proof We prove PL ⊢
∨

v∈T̂ T

x≈(↑v) = 1 by induction on T .

Case T = B. The claim follows by D≈ on B and Tautological Completeness (Propo-

sition 5.15).

Case T = T1 → T2.
∨

v∈T̂ T

x≈(↑v) =
∨

v∈T̂ T

∀T1y.xy≈(↑v)y D≈

=
∨

v∈T̂ T

∧

w∈T̂ T1

x(↑w)≈(↑v)(↑w) D∀

=
∨

v∈T̂ T1→T̂ T2

∧

w∈T̂ T1

x(↑w)≈(↑(vw)) Prop. 6.22

=
∧

w∈T̂ T1

∨

u∈T̂ T2

x(↑w)≈(↑u) Prop. 6.15

=
∧

w∈T̂ T1

1 induction for T2

= 1 TL �

Proposition 6.24 (MP’) If PL ⊢ s → t = 1, then there exists a conversion proof of

t = 1 from PL with s = 1.

Proof t = 1 → t = s → t = 1 �

Proposition 6.25 x ≈T y → fx → fy
PL
⊢ x ≈T y ∧ fx = x ≈T y ∧ fy

Proposition 6.26

1. There exists a conversion proof of s = t from PL with s ≈T t = 1.

2. PL ⊢ x ≈T y → fx → fy

3. PL ⊢ ∀Tf → fx

Proof

1. We show (1) =⇒ (2). Assume (1). By TL, it suffices to show:

PL ⊢ (x ≈T y = 1)→ (fx = 1)→ (fy = 1)

Therefore, by Boolean Deductivity (Proposition 5.27), it suffices to find a con-

version proof of fy = 1 from PL with {x ≈T y = 1, fx = 1}. Since, by (1),

there exists a conversion proof of x = y from PL with x ≈T y = 1, it suffices

to prove fy = 1 by conversion from PL with {x = y, fx = 1}. We do it as

follows: fy = fx = 1.

© G. Smolka 73 2007/7/19

2. We show (2) =⇒ (3). Assume (2) and let v ∈ T̂ T . Then:

x ≈ (↑v) = x≈(↑v)∧

∧

w∈T̂ T

f(↑w)

→ f(↑v)

 TL

= x≈(↑v)∧ (∀f → f(↑v)) D∀

= x≈(↑v)∧ (∀f → fx) (2), Prop. 6.25

By the above:

∀f → fx =

∨

v∈T̂ T

x≈(↑v)

∧ (∀f → fx) Enum, TL

=
∨

v∈T̂ T

x≈(↑v)∧ (∀f → fx) Prop. 6.17

=
∨

v∈T̂ T

x≈(↑v)

= 1 Enum, TL

3. We show (1) by induction on T . By the above, the inductive hypothesis can

always be weakened to a corresponding instance of (2) or (3).

Case T = B.

s = (s ≈B t)∧ s TL, Hyp s ≈B t = 1

= (s ≐B t)∧ s D≈

= (s ≐B t)∧ t Prop. 5.24

= (s ≈B t)∧ t D≈

= t TL, Hyp s ≈B t = 1

Case T = T1 → T2. By (3) for T1, and TL:

PL ⊢ ∀T1(λx.sx ≈T2 tx) → sx ≈T2 tx = 1

Hence, by MP’, there exists a conversion proof of sx ≈T2 tx = 1 from PL with

∀T1(λx.sx ≈T2 tx) = 1, i.e. s ≈T t = 1. By induction for T2, there exists a

conversion proof of sx = tx from PL with sx ≈T2 tx = 1. Hence, there exists

a conversion proof of sx = tx from PL with s ≈T t = 1. Finally, by Lifting

(Proposition 5.25), there exists a conversion proof of (λx.sx) = (λx.tx) from

PL with s ≈T t = 1. The claim follows by β-conversion. �

© G. Smolka 74 2007/7/19

Specification PL=

Extends PL

Axioms (x ≐T y) → fx → fy Rep (General Replacement)

Figure 16: Propositional logic with replacement axioms

6.4 Higher-Order Identities

In the previous section we have shown PL deductively complete on ∆PL. Now we

ask ourselves which axioms we need additionally to obtain deductive complete-

ness on all formulas licensed by PL, in particular on those containing higher-

order identities. It turns out that we need infinitely many axioms, one for each

type T licensed by PL: (x ≐T y) → fx → fy .

Proposition 6.27 PL= ⊢ (≐T) = (≈T)

Proof By induction on T , using several lemmas. �

Proposition 6.28 PL= is deductively complete on all terms that are licensed by PL

(or, equivalently, PL=).

Proof By Proposition 6.27 and 6.12. �

© G. Smolka 75 2007/7/19

Specification HL

Extends PL

Constants ∀T , ∃T : (T → B) → B for every type T

CT : (T → B) → T for every type T

Notation ∀x. s := ∀(λx. s)

∃x. s := ∃(λx. s)

Cx. s := C(λx. s)

PxQy. s := Px.Qy. s for P,Q ∈ {∀,∃,C}

Axioms (x = y)→ fx = (x = y)→ fy Rep (Replacement)

(∀x. fx = gx) = (f = g) Ext (Extensionality)

∃f = ¬(f = λx.0) Definition ∃

f(Cf) = ∃f Choice

Figure 17: Axioms for identities, quantifiers, and choices

7 Identities and Quantifiers

We will now explore a specification HL that extends PL with the missing axioms so

that deductive entailment lives up to our semantic expectations. Besides supply-

ing the missing axioms for the identities, HL axiomatizes quantifiers and choice

operators.

7.1 Specification HL

Figure 17 shows the specification HL we will explore in this chapter. HL extends

the specification PL, i.e., PL ⊂ HL. For every type T , HL axiomatizes the quan-

tifiers ∀T and ∃T and the choice operator CT . Note that HL is infinite since

what appears in Figure 17 are in fact schemes that may be instantiated for all

admissible types. The replacement axiom is semantically entailed. The job of

the extensionality axiom consists mainly in supplying an important property of

identities. As a side effect, it also axiomatizes the universal quantifier.

First we show that the replacement axioms yield deductivity for all types.

Lemma 7.1 Suppose A contains the replacement axiom for ≐T and there is a

conversion proof of t = t′ from A with H ∪ {s} where s is an equation obtained

with ≐T . Then there is a conversion proof of s → t = s → t′ from A with H.

Proof Analogous to the proof of Lemma 5.26. �

© G. Smolka 76 2007/7/19

Proposition 7.2 (Deductivity) Suppose A ⊢ TL and A contains the replacement

axioms for all identities. Then A ⊢ s1 → ·· · → sn → s holds if s1, . . . , sn are

equations and there is a conversion proof of s from A with {s1, . . . , sn}.

Proposition 7.3 (Reflexivity) 0 ⊢ x = x

Proof Follows with the deduction rule Ref in Figure 9. �

Proposition 7.4 (Symmetry) HL ⊢ (x = y) = (y = x)

Proof By Equiv it suffices to show that (x=y) → (y=x) and (y=x) → (x=y)

are deducible from HL. This follows with deductivity. �

Proposition 7.5 (Transitivity) HL ⊢ (x = y) → (y = z)→ (x = z)

Proof By deductivity it suffices to show that there is a conversion proof of x = z

from HL with {x = y, y = z}. This is obviously the case. �

Proposition 7.6 (Replacement) HL ⊢ (x = y)→ (fx = fy)

Proof

(x = y) → (fx = fy) = (x = y) → (λx. fx = fy)x β

= (x = y) → (λx. fx = fy)y Rep

= (x = y) → (fy = fy) β

= (x = y) → 1 Ref

= 1 TL �

Proposition 7.7 (Replacement) Let f : T → B be a variable. Then the following

formulas are deducible from HL and are equivalent with respect to
TL
⊢ :

1. (x = y) → fx → fy

2. (x = y) → (fx = fy)

3. (x = y) → fx = (x = y)→ fy

4. (x = y)∧ fx = (x = y)∧ fy

Note that (2) is less general than Proposition 7.6.

Proof The following formulas are tautologous: (2) → (3), (3) = (4), (3) → (1).

Hence it suffices to show that TL, (1) ⊢ (2).

(x = y) → (fx = fy)

= (x = y)→ (fx = fx) → (fx = fy) TL

= (x = y)→ (λy.fx = fy)x → (λy.fx = fy)y β

= 1 (1) �

© G. Smolka 77 2007/7/19

7.2 Quasi-Conversion

Conversion proofs are a convenient way to verify deductive claims of the form

A ⊢ s. To obtain a short proof, a claim A ⊢ s is typically shown with a conversion

proof from A∪B, where B contains so-called lemmas whose deducibility from A

has been established before. Given the right lemmas, deductive claims can be

verified with short proofs.

When we construct a proof of A ⊢ s, we will admit obvious consequences of

the assumptions in A as so-called implicit lemmas. For instance, if A ⊢ TL, we

may admit all tautologous formulas as implicit lemmas. In the following we will

define a more permissive class of implicit lemmas.

We call a term s a λ-instance of a term t if there exists an instance of t that

reduces to s. For example:

• (∀x. s) → s is a λ-instance of ∀f → fx.

• (∀x. fx) → fx is a λ-instance of ∀f → fx.

• [x := t]s → ∃x. s is a λ-instance of fx → ∃f .

• [x := 0]s → [x := 1]s → s is a λ-instance of f0 → f1 → fx.

Proposition 7.8 Let s be be a λ-instance of a formula t. Then {t} ⊢ s.

We call a formula s a quasi-instance of a formula t if there exists a

λ-instance t′ of t such that t′ → s is tautologous. Here are examples:

• Every tautologous formula is a quasi-instance of every formula.

• s = 1 is a quasi-instance of s if s is a formula.

• s → t is a quasi-instance of s = t if s and t are formulas.

• s = s ∧ t is a quasi-instance of s → t.

• t = s ∨ t is a quasi-instance of s → t.

• ∃x.1 is a quasi-instance of fx → ∃f .

• (x = y) → (fx = fy) is a quasi-instance of (x = y) → fx → fy .

Proposition 7.9 Let s be be a quasi-instance of a formula t. Then TL∪ {t} ⊢ s.

We call an equation a quasi-conversion step from A if it is a conversion step

from A or if it has the form Ct = Ct′, where C is a context and t = t′ or t′ = t

is a quasi-instance of a formula in A. A quasi-conversion proof is defined like a

conversion proof except that its steps are quasi-conversion steps.

Proposition 7.10 A ⊢ s if there exists a quasi-conversion proof of s from A and

A ⊢ TL.

© G. Smolka 78 2007/7/19

We will not exploit the full power of quasi-conversion steps since they can be

rather difficult to verify. It took 30 years until the decidability of the λ-instance

relation could be shown (Decidability of higher-order matching, Colin Stirling,

ICALP 2006). We do not know whether the quasi-instance relation is decidable.

7.3 Quantifier Laws

The quantifier laws shown in Figure 18 express important properties of the quan-

tifiers. Except for Generalization, the laws are formulas that are deducible in HL.

We will verify some of the laws and leave the verification of the others as exer-

cises.

Proposition 7.11 (Definition ∀) HL ⊢ ∀f = (f = λx.1)

Proof By a quasi-conversion proof from HL.

(f = λx.1) = ∀x. fx = (λx.1)x Ext

= ∀x. fx = 1 β

= ∀x. fx TL

= ∀f η �

Note that the first two steps of the proof could be merged into one step since

(f = λx.1) = ∀x. fx = 1 is a λ-instance of Ext.

Proposition 7.12 (Instantiation) HL ⊢ ∀f → fx

Proof

(∀f → fx) = (f = λx.1)→ fx Def ∀

= (f = λx.1)→ (λx.1)x Rep

= (f = λx.1)→ 1 β

= 1 TL �

Note that the last three steps of the proof could be merged into one step since

(f = λx.1)→ fx = 1 is a quasi-instance of Rep.

Proposition 7.13 (Elimination) Let x ≠ y . Then HL ⊢ (∀x.y) = y .

Proof By Equiv and 2 quasi-conversion proofs.

(∀x.y) → y = 1 Inst ∀

y → (∀x.y) = (y = 1)→ ∀x.y TL

© G. Smolka 79 2007/7/19

Extensionality

(∀x. fx = gx) = (f = g)

Definition

∀f = (f = λx.1) ∃f = ¬(f = λx.0)

Instantiation

∀f → fx fx → ∃f

Elimination

(∀x.y) = y (∃x.y) = y

Generalization

∀x. s
HL
⊢⊣ s

Pull for ∧, ∨

∀f ∧ x = ∀y. fy ∧ x

∀f ∨ x = ∀y. fy ∨ x

∀f ∧∀g = ∀x. fx ∧ gx

∃f ∧ x = ∃y. fy ∧ x

∃f ∨ x = ∃y. fy ∨ x

∃f ∨ ∃g = ∃x. fx ∨ gx

De Morgan

¬(∀x. fx) = ∃x.¬(fx) ¬(∃x. fx) = ∀x.¬(fx)

Pull for →

x → ∀f = ∀y.x → fy

∀f → x = ∃y. fy → x

∀f → ∃g = ∃x. fx → gx

x → ∃f = ∃y.x → fy

∃f → x = ∀y. fy → x

Commutativity

(∀x∀y. s) = ∀y∀x. s (∃x∃y. s) = ∃y∃x. s

Skolem

(∀x∃y. fxy) = ∃g∀x. fx(gx) (∃x∀y. fxy) = ∀g∃x. fx(gx)

Figure 18: Quantifier laws (pull laws assume x ≠ y)

© G. Smolka 80 2007/7/19

= (y = 1)→ ∀x.1 Rep

= (y = 1)→ ((λx.1) = (λx.1)) Def ∀

= 1 TL �

Convince yourself that the second quasi-conversion proof can be written more

compactly by fully exploiting the power of quasi-conversion steps:

y → (∀x.y) = y → ∀x.1 Rep

= 1 Def ∀

Proposition 7.14 (Generalization) ∀x. s
HL
⊢⊣ s

Proof By 2 quasi-conversion proofs.

(∀x. s) = ∀x.1 s

= 1 Elim ∀

s = (∀x. s) → s ∀x. s

= 1 Inst ∀ �

Proposition 7.15 (Pull ∀∧) Let x ≠ y . Then HL ⊢ ∀f ∧ x = ∀y. fy ∧ x.

Proof By BCA on x and 2 conversion proofs.

∀f ∧ 0 = 0 TL

= ∀y.0 Elim ∀

= ∀y. fy ∧ 0 TL

∀f ∧ 1 = ∀f TL

= ∀y. fy η

= ∀y. fy ∧ 1 TL �

Proposition 7.16 (De Morgan) HL ⊢ ∀x. fx = ∃x. fx

Proof By Equiv.

∀x. fx → ∃x. fx = ∀f ∨ ∃x. fx η, TL

= ∀x. fx ∨ ∃x. fx Pull

© G. Smolka 81 2007/7/19

= ∀x.1 Inst ∃

= 1 Elim ∀

(∃x. fx)→ ∀x. fx = (∃x. fx)∧∀f η, TL

= ∃x. fx ∧∀f Pull

= ∃x. fx ∧∀f ∧ fx Inst ∀

= ∃x.0 TL

= 1 Elim ∃ �

Proposition 7.17 (Pull →∀) Let x ≠ y . Then HL ⊢ x →∀f = ∀y.x → fy .

Proof The claim is a quasi-instance of the pull law for ∀ and ∨. A more detailed

conversion proof looks as follows:

x → ∀f = ∀f ∨ x TL

= ∀y. fy ∨ x Pull ∀∨

= ∀y.x → fy TL �

Proposition 7.18 (Pull ∃→) Let x ≠ y . Then HL ⊢ ∃f → x = ∀y. fy → x.

Proof

∃f → x = ∃f ∨ x TL

= (∀y. fy)∨ x de Morgan

= ∀y. fy ∨ x Pull

= ∀y. fy → x TL �

7.4 Correctness of Henkin’s Reduction

Henkin discovered that the Boolean connectives can be expressed with the iden-

tities (see Figure 5 in Chapter 3). As one would expect, Henkin’s equations are

deducible in HL. Proposition 7.11 states the deducibility of the equation for the

universal quantifier. We now prove that the equations for 0 and conjunction are

deducible.

Proposition 7.19 (Definition 0) HL ⊢ 0 = ((λx.1) = λx.x)

© G. Smolka 82 2007/7/19

Proof

((λx.1) = λx.x) = ∀x.1 = x Ext

= ∀x.x TL

= (∀x.x)∧ 0 Inst ∀

= 0 TL �

Proposition 7.20 (Definition ∧) Let f : B → B → B. Then:

HL ⊢ x ∧y = ((λf .f11) = λf .fxy).

Proof

((λf .f11) = λf .fxy) = ∀f . f11 = fxy Ext

= (∀f . f11 = fxy) ∧ (1∧ 1 = x ∧y) Inst ∀

= (∀f . f11 = fxy) ∧ x ∧y TL

= x ∧ y ∗

The last step (∗) follows with BCA (zero-one instances), Ref and Elim ∀. �

7.5 Backward Proofs

To prove a formula s with quantifiers, its often helpful to attempt the construc-

tion of a quasi-conversion proof of s = 1, with some backward steps t ⊣ t′

mixed in. Such a proof can be compiled into derivation of s. Since the compila-

tion into derivations reverses the order of the proof steps, we call such proofs

backward proofs. The backward steps will be justified by the deduction rules

in Figure 19. To obtain a backward step, the rules are applied from bottom to

top (e.g., ∃x. s ⊣ [x:=t]s). Here is an example of a backward proof that uses the

abstraction rule Abs:

∃x.x = y ⊣ y = y Abs x := y

= 1 Ref

Note that Abs is a special case of the quasi-modus ponens rule QMP where the

formula in A is the instantiation law fx → ∃f .

Except for Abs, CA and QMP, the rules in Figure 19 are bidirectionally sound.

The rules Equiv, And, BCA and CA are non-linear (i.e., they have more than one

premise). You have seen them before in the chapter on propositional logic.

Exercise 7.21 Explain why fx → s ⊢ ∀f → s follows with QMP from the instan-

tiation law for ∀.

© G. Smolka 83 2007/7/19

Gen
s

∀x. s
Abs

[x:=t]s

∃x. s

Equiv
s → t t → s

s = t
And

s t

s ∧ t

BCA
[x:=0]s [x:=1]s

s
CA

t1 ∨ t2 t1 → s t2 → s

s

QC
s

t
s = t quasi-conversion step from A

QMP
s

t
s → t quasi-instance of formula in A

Figure 19: Sound deduction rules for
A
⊢ where A ⊢ HL

Proposition 7.22 (Double Pull) HL ⊢ ∀f ∧∀g = ∀x. fx ∧ gx

Proof By Equiv and two linear backward proofs. We show one and leave the

other as an exercise. The backward step is justified by the bidirectionally sound

rule Gen, which makes it possible to drop outermost universal quantifiers.

∀f ∧∀g → ∀x. fx ∧ gx

= ∀x.∀f ∧∀g → fx ∧ gx Pull →∀

⊢⊣ ∀f ∧∀g → fx ∧ gx Gen

= ∀f ∧ fx ∧∀g → fx ∧ gx Inst ∀

= ∀f ∧ fx ∧∀g ∧ gx → fx ∧ gx Inst ∀

= 1 TL �

Proposition 7.23 (Commutativity) HL ⊢ (∀x∀y. s) = ∀y∀x. s

Proof By Equiv. One proof suffices for both subgoals.

((∀x∀y. s) →∀y∀x. s) ⊢⊣ (∀x∀y. s) → s Pull, Gen

= (∀x∀y. s) ∧ (∀y. s) → s Inst ∀

= (∀x∀y. s) ∧ (∀y. s) ∧ s → s Inst ∀

= 1 TL �

© G. Smolka 84 2007/7/19

7.6 Turing’s Law and Cantor’s Law

We now consider two convincing examples for backward proofs that are also

interesting for other reasons.

How would you answer the following questions?

1. On a small island, can there be a barber who shaves everyone who doesn’t

shave himself?

2. Does there exist a Turing machine that halts on the representation of a Turing

machine x if and only if x does not halt on the representation of x?

3. Does there exist a set that contains a set x as element if and only if x ∉ x?

The answer to all 3 questions is no, and this no has purely logical reasons.

Proposition 7.24 (Turing) Let f : T → T → B. Then:

HL ⊢ ¬(∃f∃x∀y. fxy = fyy)

Proof

¬(∃f∃x∀y. fxy = fyy) = ∀f∀x∃y. fxy = fyy de Morgan, TL

⊣ fxx = fxx Gen, Abs y := x

= 1 TL �

Cantor’s Theorem says that for no set X there is a surjective function

X → P(X). The non-countability of the power set of the natural numbers is a

consequence of this theorem. The usual proof of the theorem uses a famous

argument known as diagonalization. Nevertheless, Cantor’s Theorem holds for

purely logical reasons and has a straightforward formal proof. Recall that we

can represent sets whose elements are of type T by their characteristic func-

tions, which have the type T → B.

Proposition 7.25 (Cantor) Let f : T → T → B. Then:

HL ⊢ ¬(∃f∀g∃x. fx = g)

Proof

¬(∃f∀g∃x. fx = g) = ¬(∃f∀g∃x∀y. fxy = gy) Ext

= ∀f∃g∀x∃y.¬(fxy = gy) de Morgan

⊣ ∀x∃y.¬(fxy = fyy) Gen, Abs g := λy. fyy

⊣ ¬(fxx = fxx) Gen, Abs y := x

= 1 TL �

© G. Smolka 85 2007/7/19

7.7 Quantified Replacement

With Rep one can replace equals with equals provided there is no capture. As

one would expect, capture is ok for variables for which the supporting equation

universally holds. This can be proven from Ext and Rep.

Proposition 7.26 HL ⊢ (∀x. s = t)→ (f(λx.gs) = f(λx.gt))

Proof

(∀x. s = t) → (f(λx.gs) = f(λx.gt))

= ((λx.s) = λx.t)→ (f(λx.gs) = f(λx.gt)) Ext

= ((λx.s) = λx.t)→ (λh.f(λx.g(hx)) = f(λx.gt)) (λx.s) β

= ((λx.s) = λx.t)→ (λh.f(λx.g(hx)) = f(λx.gt)) (λx.t) Rep

= ((λx.s) = λx.t)→ (f(λx.gt) = f(λx.gt)) β

= 1 Ref

Note that the β-steps of the proof are redundant since they come for free with a

quasi-conversion from Rep. �

7.8 Choice and Skolem

The axiom Choice of HL corresponds to the axiom of choice in set theory. So

far, we have not made use of Choice. We will now prove the most prominent

consequence of Choice, known as Skolem’s law.

Proposition 7.27 (Skolem) HL ⊢ (∀x∃y. fxy) = ∃g∀x. fx(gx)

Proof By Equiv.

(∀x∃y. fxy) → ∃g∀x. fx(gx)

= (∀x.∃(fx)) → ∃g∀x. fx(gx) η

= (∀x. fx(C(fx))) → ∃g∀x. fx(gx) Choice

= 1 Inst ∃ with g := λx.C(fx)

(∃g∀x. fx(gx)) →∀x∃y. fxy

⊢⊣ (∀x. fx(gx)) → ∃y. fxy Pull, Gen

= (∀x. fx(gx)) ∧ fx(gx) → ∃y. fxy Inst ∀

= 1 Inst ∃ �

© G. Smolka 86 2007/7/19

A basic proposition of set theory says that there is a surjective function X → Y

if and only if there is an injective function Y → X, provided X and Y are not

empty. In HOL, we can define surjectivity and injectivity of functions as follows:

surj f := ∀y∃x. fx = y

inj g := ∃f∀y. f(gy) = y

By Skolem’s law we have surj f = ∃g∀y. f(gy) = y , which gives us the injective

function as required. Hence, given f : S → T and g : T → S, we have:

surj f → ∃g. inj g

= (∀y∃x. fx = y) → ∃g∃f∀y. f(gy) = y Def surj and inj

= (∃g∀y. f(gy) = y) → ∃g∃f∀y. f(gy) = y Skolem

= (∃g∀y. f(gy) = y) → ∃f∃g∀y. f(gy) = y Com

= 1 Inst ∃

Exercise 7.28 Let f : S → T and g : T → S. Show that the following formulas are

duducible from HL. Do not use Choice or Skolem.

a) inj g → ∃f . surj f

b) (∃g. inj g) = ∃f . surj f

c) inj g ∧ (gx = gy) → (x = y)

d) inj g = ∀x∀y. (gx = gy) = (x = y)

Proposition 7.29 HL ⊢ C(λx.x = y) = y

Proof

(C(λx.x = y) = y) = (λx.x = y)(C(λx.x = y) β

= ∃x.x = y Choice

⊣ y = y Abs x := y

= 1 Ref �

Proposition 7.30 HL ⊢ (∀x. fx = (x = y)) → (Cf = y)

Proof

(∀x. fx = (x = y)) → (Cf = y)

= (f = λx.x = y) → (Cf = y) Ext

= (f = λx.x = y) → (C(λx.x = y) = y) Rep

= (f = λx.x = y) → (y = y) Proposition 7.29

= 1 Ref �

© G. Smolka 87 2007/7/19

Exercise 7.31 Show that the following formulas are duducible from HL.

a) (∀x. (x = y)→ fx) = fy

b) ∃f ∧ (∀x. fx → (x = y)) = ∀x. fx = (x = y).

© G. Smolka 88 2007/7/19

8 Tableaux

Tableaux are a notation for tree-structured backward proofs. They come with a

proof construction method useful for humans and computers. Tableaux accom-

modate branching rules like BCA, CA and Equiv in a uniform manner. They also

accommodate hypothetical conversion proofs. Two of the key ideas come from

Gentzen’s sequent calculus (1935) and are as follows:

• Stepwise decomposition of the initial formula.

• Stepwise expansion of the initial formula by adding formulas obtained by

decomposition.

One can have postive and negative tableaux. In the literature one finds only

negative tableaux, which are also known as refutation tableaux since their goal

consists in showing ¬s. We will consider postive tableaux whose goal consists

in showing s. Tableaux first appeared in the work of Beth (1959) and Smullyan

(1966). They take a prominent role in Melvin Fittings textbook (1996) on first-

order logic.

8.1 Hybrid Tableaux

Tableaux are a notation for tree-structured backward proofs. In a tableau, an

initial formula is expanded by stepwise adding entailed formulas until a set of

tautologous formulas is reached. An expansion step is either unary or binary:

s
A
⊢⊣ s ∨ t unary expansion

s
A
⊢⊣ s ∨ t1, s ∨ t2 binary expansion

The construction of a tableau may proceed as follows:

s ⇝

s

t
⇝

s

t

t1 t2

The initial formula is s. It is first expanded with a unary step to s ∨ t. Then

s ∨ t is expanded with a binary step to s ∨ t ∨ t1 and s ∨ t ∨ t2. The formulas

represented by the root-to-leaf paths of a tableau are called the branches of the

tableau. Here are the sets of branches of the above tableaux:

{s} ⇝ {s ∨ t} ⇝ {s ∨ t ∨ t1, s ∨ t ∨ t2}

Given a tableau for an initial formula s whose set of branches is B, we have s
A
⊢⊣ B.

Hence, we have A ⊢ s if all branches are tautologous and A ⊢ TL.

© G. Smolka 89 2007/7/19

QC
s

t
s = t is a quasi-conversion from A

QMP
s1 · · · sn

t
t → s1 ∨ · · · ∨ sn is a quasi-instance from A and n ≥ 1

UI
∀x. s

s
x fresh EI

∃x. s

[x:=t] s

And
s ∧ t

s | t
Equiv

s =B t

s ∨ t | s ∨ t

Rep
s [x:=s1] t

[x:=s2] t
s ∈ {s1=s2, s2=s1}

Figure 20: Hybrid expansion rules

A tableau system comes with a notion of closedness for branches. If a branch

is closed, it must be tautologous. A tableau is closed if all its branches are closed.

Closed tableaux represent complete proofs and open tableaux represent partial

proofs.

One can have different tableau systems that differ in their closedness condi-

tion and their set of expansion rules. We consider a sytem that we call hybrid

tableaux. With hybrid tableaux, a branch is closed if and only if it is tautologous.

The expansion rules for hybrid tableaux are shown in Figure 20. The expansion

rules must not be confused with deduction rules. And and Equiv provide for bi-

nary expansions, all other rules for unary expansions. A leaf of a tableau can be

expanded with a rule if the premises of the rule appear on the branch to the leaf.

The side condition of the rule UI (universal instantiation) states that the branch

to which the rule is applied must not contain x.

We will explain the tableau expansion rules together with their correctness

proofs. For unary rules we show s
A
⊢⊣ s ∨ t, and for binary rules s

A
⊢⊣ s ∨ t1, s ∨ t2.

We could assume A ⊢ HL but prefer to show stronger equivalences if this is

possible. The following known facts will be useful:

1. A ⊢ s = t =⇒ s
A
⊢⊣ t (Weakening)

2. A ⊢ B and s
B
⊢⊣ t =⇒ s

A
⊢⊣ t (Monotonicity)

3. s ∧ t
TL
⊢⊣ s, t (And)

4. HL ⊢ TL

© G. Smolka 90 2007/7/19

The disjuncts of a formula are defined recursively:

Ds := {s} if s is no disjunction

D(s ∨ t) := Ds ∪Dt

Proposition 8.1 (Correctness of QC) Let A ⊢ TL, t ∈ Ds, and t = t′ be a quasi-

conversion from A. Then A ⊢ s = s ∨ t′.

Proof Since t ∈ Ds we know that s = s∨ t is tautologous. Now the claim follows

by quasi-conversion:

s = s ∨ t TL

= s ∨ t′ A �

Proposition 8.2 (Correctness of QMP) Let A ⊢ TL, Dt ⊆ Ds, and t′ → t be a

quasi-instance from A. Then A ⊢ s = s ∨ t′.

Proof Since Dt ⊆ Ds we know that s = s ∨ t is tautologous. Moreover, t = t ∨ t′

is a quasi-conversion from A since t′ → t is a quasi-instance from A. Now the

claim follows by quasi-conversion:

s = s ∨ t TL

= s ∨ t ∨ t′ A

= s ∨ t′ TL �

Proposition 8.3 (Correctness of EI) Let (∃x.t) ∈ Ds. Then HL ⊢ s = s∨[x:=t′]t.

Proof Follows with QMP since [x:=t′]t → ∃x.t is a quasi-instance of fx → ∃f

(the instantiation law for ∃). �

We will use the following notation for negated equations:

s ≠ t := s = t

Proposition 8.4 (Correctness of Rep)

Let {s1≠s2, [x:=s1] t} ⊆ Ds or {s2≠s1, [x:=s1] t} ⊆ Ds. Then s
HL
⊢⊣ s ∨ [x:=s2] t.

Proof Follows with QMP since the formulas [x:=s2] t → s1≠s2 ∨ [x:=s1] t and

[x:=s2] t → s2≠s1∨[x:=s1] t are quasi-instances of (x=y)→ fx = (x=y) → fy

(the replacement axiom of HL). This follows since (x → y = x → z)→ z → x ∨y

and (x → y = x → z)→ y → x ∨ z are tautologies. �

© G. Smolka 91 2007/7/19

Proposition 8.5 (Correctness of UI) Let (∀x.t) ∈ Ds and x ∉N s.

Then s
HL
⊢⊣ s ∨ t.

Proof Since (∀x.t) ∈ Ds, we know that s = s ∨ (∀x.t) is tautologous. Hence:

s = s ∨ (∀x.t) TL

= ∀x. s ∨ t Pull, x ∉N s

⊢⊣ s ∨ t Gen �

Proposition 8.6 (Correctness of And) Let (t1 ∧ t2) ∈ Ds. Then s
TL
⊢⊣ s ∨ t1, s ∨ t2.

Proof Since (t1 ∧ t2) ∈ Ds, we know that s = s ∨ (t1 ∧ t2) is tautologous. Hence:

s = s ∨ (t1 ∧ t2) TL

= (s ∨ t1)∧ (s ∨ t2) TL

Now the claim follows with Weakening and And. �

Proposition 8.7 (Correctness of Equiv) Let (t1 =B t2) ∈ Ds.

Then s
TL
⊢⊣ s ∨ t1 ∨ t2, s ∨ t1 ∨ t2.

Proof Since (t1 =B t2) ∈ Ds, we know that s = (s ∨ t1 ∨ t2) ∧ (s ∨ t1 ∨ t2) is

tautologous. Now the claim follows with Weakening and And. �

8.2 Hybrid Tableau Proofs

We now consider several examples of (hybrid) tableau proofs. A tableau proof is

a closed tableau that is validated by the expansion rules and is annotated so that

one can see which axioms are used with quasi-conversion and the quasi-modus

ponens steps.

Example 8.8 Here is a tableau proof of HL ⊢ (x = y)→ (y = z) → (x = z).

1. (x = y) → (y = z)→ (x = z)

2. x ≠ y, y ≠ z, x = z TL

3. y = z Rep

Every line represents a formula. The commas in the second line represent dis-

junctions. This notational device helps to reduce the number of parentheses.

Line (2) is obtained from line (1) by a quasi-conversion from TL. Line (3) is ob-

tained with Rep from the disjuncts x ≠ y and x = z in line (2). Since the single

branch of the tableau contains a complementary pair of formulas (y ≠ z and

y = z), the tableau is closed. �

© G. Smolka 92 2007/7/19

Example 8.9 Here is a tableau proof that uses the expansion rule Equiv.

(x = y) = (y = x)

x ≠ y, y = x Equiv

y = y Rep

1 Ref

x = y, y ≠ x Equiv

x = x Rep

1 Ref
�

Example 8.10 (BCA) Here is a tableau proof of the axiom BCA of PL.

1. f0 → f1 → fx

2. f0, f1, fx TL

3. x ≠ 0∧ x ≠ 1 QMP TL

4. x ≠ 0 And

5. f0 Rep of (4), (2)

4. x ≠ 1 And

5. f1 Rep of (4), (2)

Formula (2) of the proof is obtained from formula (1) by QC. Since (1) = (2)

tautologous, it does not matter which assumption we use. We annotate such

step with TL. Formula (3) is introduced with QMP. Since (3) is a tautology, it does

not matter which assumption we use. We annotate such step with QMP TL. �

Example 8.11 (Double Instantiation) Here is a linear tableau proof that uses the

instantiation rules for the quantifiers. The types are as follows: f : T → T → B,

h : (T → B) → T , g : T → B.

1. ∃g∀x∃h. h(fx) ∧ hg

2. ∀x∃h. h(fx) ∧ h(λx.fxx) EI with g := λx.fxx

3. ∃h. h(fx) ∧ h(λx.fxx) UI

4. fxx EI of (3) with h := λg.gx, TL

5. fxx EI of (3) with h := λg.gx, TL

Note that the existential formula (3) is instantiated twice and that the instan-

tiation steps (4) and (5) exploit the power of quasi-conversion and simplify

fxx ∧ fxx and fxx ∧ fxx to fxx and fxx. �

© G. Smolka 93 2007/7/19

Example 8.12 (Ping-Pong)

1. (∃f∀y. f(gy) = y) → ∃f∀y∃x. fx = y

2. ∃f∀y. f(gy) = y, ∃f∀y∃x. fx = y TL

3. ∀f∃y. f(gy) ≠ y de Morgan twice

4. ∃y. f(gy) ≠ y UI

5. ∀y∃x. fx = y EI of (2)

6. ∃x. fx = y UI

7. f (gy) = y EI with x := gy

8. f (gy) ≠ y EI of (4)

Note that the universal instantiation (4) and (6) must precede the existential in-

stantiations (5) and (7) so that f and y are fresh for the universal instantiations.�

8.3 First-order Tableaux

We now consider a simpler tableaux system that comes without quasi-conversion

and quasi-modus ponens and makes no use of assumptions (i.e., A = 0). A

branch s of a first-order tableaux is closed if 1 ∈ Ds or ∃t ∈ Ds : t ∈ Ds (i.e.,

s contains two complementary disjuncts). The expansion rules for first-order

tableaux are shown in Figure 21. As it will turn out, first-order tableaux are

complete for classical first-order formulas. That is, for any classical first-order

formula that is deducible from HL without Choice, there is a first-order tableau

proof.

The rules exhibit some remarkable properties. For every logical constant

there are at most two expansion rules. The overlined rules are obtained with

the de Morgan laws and the non-overlined rules. If there are two rules for a logi-

cal constant that is not an indentity, one of the rules if overlined. If we construct

a proof for a formula, we need only the rules for the logical constants that occur

in the formula. In particular, if we construct proofs for tautologous formulas, we

don’t need the rules for quantifiers and identities.

The propositional rules yield a descision algorithm for propositial formulas.

First note that they only add subformulas of existing formulas to a branch, pos-

sibly in negated form. Hence, after finitely many steps, no new formulas can be

added to a branch. We call such branches saturated. A tableau is complete if

each of its branches is either closed or saturated. According to what we have

said, we can construct a complete tableau for every propositional formula. If

the tableau is closed, the formula is deducible and hence a tautology. Otherwise

the tableau contains a saturated branch that is not closed. One can show that

a saturated branch is a tautology if and only if it is closed (Hintikka’s Lemma).

© G. Smolka 94 2007/7/19

Zero
0

1

Not
s

s

Or
s ∨ t

s | t

And
s ∧ t

s | t
And

s ∧ t

s ∨ t

Imp
s → t

s ∨ t
Imp

s → t

s | t

Equiv
s =B t

s ∨ t | s ∨ t
Equiv

s =B t

s ∨ t | s ∨ t

UI
∀x. s

s
x fresh UI

∀x. s

[x:=t] s

EI
∃x. s

[x:=t] s
EI

∃x. s

s

Ref
s = s

1
Rep

s [x:=s1] t

[x:=s2] t
s ∈ {s1=s2, s2=s1}

Figure 21: First-order expansion rules

Since a formula s is a tautology if and only if every branch of a tableau for s is

a tautology, the existence of a complete but non-closed tableau implies that the

formula is not a tautology.

© G. Smolka 95 2007/7/19

9 Prime Trees and BDDs

In this chapter we consider a special class of propositional formulas, called prime

trees, such that every propositional formula is deductively equivalent to exactly

one prime tree (with respect to TL). In other words, prime trees are unique normal

forms for propositional formulas. We also look at an efficient graph representa-

tion for prime trees known as BDDs (binary decision diagrams). Every node of a

BDD represents a prime tree.

Prime trees are a special form of decision trees. Decision trees have been in

the literature for a long time. But it took until 1986 that Bryant discovered a class

of decision trees that yield unique representations of propositional formulas

(i.e., the class of prime trees). The BDD implementation of prime trees is of

great practical importance for the computer-aided design of circuits and for the

verification of finite transition systems (i.e., model checking).

9.1 Prime Trees

In this chapter we call two formulas s, t equivalent if s = t is tautologous. We

will use the following notation:

(s, t0, t1) := s ∧ t0 ∨ s ∧ t1 conditional

Proposition 9.1 The following formulas are tautologies:

1. (0, x, y) = x

2. (1, x, y) = y

3. (x,y,y) = y

We use PF to denote the set of all propositional formulas. The set DT ⊆ PF of

decision trees is defined recursively:

1. 0 and 1 are decision trees.

2. (x, s, t) is a decision tree if s and t are decision trees and x : B is a variable.

As the name suggests, decision trees can be thought of as trees. For instance,

(x,1, (y, (z,0,1),0)) may be seen as the tree

x

1 y

z

0 1

0

A decision tree is reduced if none of its subtrees has the form (x, s, s). Formally,

we can define reduced decision trees recursively:

© G. Smolka 96 2007/7/19

1. 0 and 1 are reduced decision trees.

2. (x, s, t) is a reduced decision tree if s and t are different reduced decision

trees and x : B is a variable.

By Proposition 9.1(3) we can compute for every decision tree an equivalent re-

duced decision tree.

In the following we assume a linear order on the set of all variables of type B.

We write x < y if x is smaller than y with respect to this order. The notion of

prime time is defined with respect to this order.

A decision tree is ordered if the variables get larger as one goes down on

a path from the root to a leaf. For example, the example tree drawn above is

ordered if and only if x < y < z. Formally, we define ordered decision trees

recursively:

1. 0 and 1 are ordered decision trees.

2. (x, s, t) is a ordered decision tree if s and t are ordered decision trees and x

is smaller than every variable that occurs in s or t.

A prime tree is a reduced and ordered decision tree.

Proposition 9.2 For every propositional formula s there exists an equivalent

prime tree containing only variables that occur in s.

Proof By induction on the number of variables occurring in s.

Case 1 Let s be closed. Then s is equivalent to 0 or 1 by Proposition 5.14 (0-1).

Case 2 Let x be the least variable occurring in s. By Boolean Expansion we know

that s is equivalent to (x, [x:=0]s, [x:=1]s). By induction there exist prime trees

s0 and s1 equivalent to [x:=0]s and [x:=1]s that contain only variables larger

than x. We know that s is equivalent to (x, s0, s1). If s0 ≠ s1, then (x, s0, s1) is a

prime tree. Otherwise, s is equivalent to the prime tree s0. �

Next we will show that there is at most one prime tree equivalent to a given

propositional formula. Recall that T denotes the unique model of PL.

Proposition 9.3 I ⊃ T =⇒ Î(x, s, t) = if Ix = 0 then Îs else Ît

Lemma 9.4 For all prime trees s, t: s ≠ t =⇒ ∃I ⊃ T : Îs ≠ Ît.

Proof By induction on |s| + |t|. Let s, t be different prime trees. We show that

there is an interpretation I ⊃ T such that Îs ≠ Ît.

Case s, t ∈ {0,1}. Every I ⊃ T does the job.

Case s = (x, s0, s1) and x ∉N t. By induction we have I ⊃ T such that Îs0 ≠ Îs1.

Since x occurs neither in s0 nor s1, we have Îx,0s ≠ Îx,1s since Îx,0s = Îx,0s0 =

© G. Smolka 97 2007/7/19

Îs0 ≠ Îs1 = Îx,1s1 = Îx,1s. But Îx,0t = Îx,1t since x does not occur in t. Hence

Îx,0s ≠ Îx,0t or Îx,1s ≠ Îx,1t.

Case t = (x, t0, t1) and x ∉N s. Analogous to previous case.

Case s = (x, s0, s1) and t = (x, t0, t1). Then s0 ≠ t0 or s1 ≠ t1. By induction there

is an I ⊃ T such that Îs0 ≠ Ît0 or Îs1 ≠ Ît1. By coincidence Îx,0s0 ≠ Îx,0t0 or

Îx,1s1 ≠ Îx,1t1. Hence Îx,0s ≠ Îx,0t or Îx,1s ≠ Îx,1t.

To see that the case analysis is exhaustive, consider that case that both s and

t are non-atomic trees with the root variables x and y . If x < y , then x does

not occur in t since all variables in t are greater or equal than y and hence are

greater that x. If y < x, then y does not occur in s since all variables in s are

greater or equal than x and hence are greater than y . �

Theorem 9.5 (Prime Tree) For every propositional formula there exists exactly

one equivalent prime tree.

Proof The existence follows with Proposition 9.2. The uniqueness follows with

Lemma 9.4 and the fact that for equivalent prime trees there cannot be an inter-

pretation I ⊃ T that evaluates them differently (since T is a model of HL). �

For every propositional formula s we denote the unique prime tree equivalent

to s with πs. We call πs the prime tree for s.

Proposition 9.6 Let s and t be propositional formulas.

1. s, t are equivalent if and only if πs = πt.

2. s = t is a tautology if and only if πs = πt.

3. s is a tautology if and only if πs = 1.

4. N (πs)∩ Var ⊆N s.

The significant variables of a propositional formula are the variables occur-

ring in its prime tree:

SV s := N (πs)∩ Var

Proposition 9.7 For every propositional formula s:

1. SV s ⊆N s

2. A variable x is significant for s if and only if there exists an interpretation

I ⊃ T and a value v ∈ I(τx) such that Îs ≠ Îx,vs.

© G. Smolka 98 2007/7/19

9.2 Algorithms

Next we consider algorithms for the Boolean operations on prime trees. We will

develop algorithms for negation and conjunction. The algorithms for the other

operations can be constructed along the same lines.

The algorithms for negation and conjunction compute the functions

not ∈ PT → PT and ∈ PT→ PT → PT

not s = π(s) and s t = π(s ∧ t)

As it turns out, the algorithm can be derived elegantly together with their cor-

rectness proofs.

We base the algorithm for negation on the tautologies (verify!)

0 = 1

1 = 0

(x,y, z) = (x,y, z)

With these tautologies one can verify the equations

π(0) = 1

π(1) = 0

π((x, s, t)) = (x,π(s), π(t)) if (x, s, t) is a prime tree

The correctness of the first two equations is obvious. For the corectness of the

last equation we show 2 things:

1. The formula on the left is equivalent to the formula on the right. To ver-

ify this, we can erase all applications of π since π always yields equivalent

formulas. Now we are left with an instance of the third tautology.

2. The formula on the right is a prime tree. Let (x, s, t) be a prime tree. Then s

and t are not equivalent. Hence s and t are not equivalent (by contradiction,

double negation). Hence π(s) and π(t) are different prime trees. Since π(s)

and π(t) contain only variables that are in s and t and (x, s, t) is a prime tree,

(x,π(s), π(t)) is a prime tree.

Together, the 2 properties yield the correctness of the equation since for every

formula there is only one equivalent prime tree.

Now we have the following procedure:

not : PT → PT

not 0 = 1

not 1 = 0

not(x, s, t) = (x, not s, not t)

© G. Smolka 99 2007/7/19

The equation are exhaustive and terminating. Moreover, they are valid for the

function not, since they reduce to the above equations with π by unfolding

the definition of the function not. Hence the procedure not computes the func-

tion not.

Next we devise the algorithm for conjunction. This time we employ the tau-

tologies (verify!)

0∧y = 0

1∧y = y

(x,y, z)∧ (x,y′, z′) = (x,y ∧y′, z∧ z′)

(x,y, z)∧u = (x,y ∧u, z∧u)

and the commutativity of ∧. We also use an auxiliary function

red ∈ DT → DT

red 0 = 0

red 1 = 1

red(x, s, t) = if s = t then s else (x, s, t)

Now we can verify the following equations:

π(0∧ t) = 0

π(1∧ t) = t

π((x, s0, s1)∧ (x, t0, t1)) = red(x,π(s0 ∧ t0), π(s1 ∧ t1))

π((x, s0, s1)∧ t) = red(x,π(s0 ∧ t), π(s1 ∧ t))

if t = (y, t0, t1) and x < y

As for negation, the correctness of the equations is established in 2 steps. First

one verifies that for each equations the formula on the left is equivalent to the

formula on the right. Since π and red yield equivalent formulas, we can erase

their applications. Now we are left with instances of the above tautologies. For

the second step we show that the formulas on the right are prime trees, provided

the arguments on the left hand side are prime trees. This is easy and explains

the condition x < y coming with the last equation.

© G. Smolka 100 2007/7/19

Now we have the following procedure:

and : PT→ PT → PT

and 0 t = 0

and 1 t = t

and s 0 = 0

and s 1 = s

and (x, s0, s1) (x, t0, t1) = red(x, and s0 t0, and s1 t1)

and (x, s0, s1) t = red(x, and s0 t, and s1 t)

if t = (y, t0, t1) and x < y

and s (y, t0, t1) = red(y, and s t0, and s t1)

if s = (x, s0, s1) and x > y

The procedure and computes the function and since the following properties are

satisfied:

1. The equations are exhaustive and terminating.

2. The equations hold for the function and. This is the case since the equations

reduce to the above tautologies (up to commutativity) using the definitions of

the functions and and red.

You now know enough so that you can devise algorithms for the other Boolean

operations. Things are as before since for every Boolean operation ◦ the follow-

ing formulas are tautologies:

(x,y, z) ◦ (x,y′, z′) = (x,y ◦y′, z ◦ z′)

u ◦ (x,y′, z′) = (x,u ◦y′, u ◦ z′)

(x,y, z) ◦u = (x,y ◦u, z ◦u)

This follows with BCA on x and the tautologies of Proposition 9.1.

9.3 BDDs

Trees can be represented as nodes of graphs. Graphs whose nodes represent

decision trees are called BDDs (binary decision diagrams). Binary decision dia-

grams (BDD) were introduced by Lee (Lee 1959), and further studied and made

known by Akers (Akers 1978) and Boute (Boute 1976).

Figure 22 shows a BDD. The node labeled with the variable x represents the

decision tree shown to the right. Dotted edges of the graph lead to left subtrees

and solid edges to right subtrees. Subtrees that occur more than once in a deci-

sion tree need only be represented once in a BDD (so-called structure sharing).

© G. Smolka 101 2007/7/19

1 0

z y

x
x

z

1 0

y

0 z

1 0

Figure 22: A BDD and the decision tree represented by the topmost node

In our example BDD the node labeled with z represents a subtree that occurs

twice in the decision tree on the right.

Formally, a BDD is a function γ such that there exists a natural number N ≥ 1

such that

1. γ ∈ {2, . . . , N} → Var × {0, . . . , N} × {0, . . . , N}.

2. ∀ (n, (x,n0, n1)) ∈ γ : n > n0 ∧ n > n1.

The nodes of γ are the numbers 0, . . . , N . the nodes 0 und 1 represent the

decision trees 0 and 1. A node n ≥ 2 with γn = (x,n0, n1) carries the label x

and has two outgoing edges pointing to n0 and n1, where the edge to n0 is dotted

and the edge to n1 is solid. Note that the second condition in the definition of

BDDs ensures that BDDs are acyclic. The BDD drawn in Figure 22 is the following

function (in table representation):

2 (z,1,0)

3 (y,0,2)

4 (x,2,3)

For every BDD γ we define the function

τγ ∈ {0,1} ∪Dom γ → DT

τγ0 = 0

τγ1 = 1

τγn = (x, τγn0, τγn1) if γn = (x,n0, n1)

which yields for every node n of γ the decision tree represented by γ and n.

A BDD is minimal if different nodes represent different trees. The BDD in

Figure 22 is minimal.

Theorem 9.8 (Minimality) A BDD is minimal if and only if it is injective.

Given the table representation of a BDD, it is very easy to see whether it is

minimal: The BDD is minimal if and only if no triple (x,n0, n1) occurs twice in

the right column of the table representation.

© G. Smolka 102 2007/7/19

You will find useful information in the English Wikipedia entry for binary

decision diagram.

© G. Smolka 103 2007/7/19

10 First-Order Propositional Completeness

In this chapter we consider finite sets of tautologies that are deductively equiv-

alent to the set of all tautologies. To obtain such a set, one can either start

from the axioms for Boolean algebras or from the implication-based systems pi-

oneered by Frege (often called Hilbert systems). We will start from the axioms

for Boolean algebras. For the completeness proof we have again two possibili-

ties. Either we base it on the expansion law (a first-order version of BExp) or on

a reduction to conjunctive normal form. We choose the expansion law.

10.1 BC and BC’

Recall the definition of propositional formulas and tautologies in § 5.2. We know

PL ⊢⊣ TL ∪ {BCA} . PL has exactly one model. We call this model T . The struc-

ture T interprets the names for the Boolean primitives in the canonical way.

Proposition 10.1 For every propositional formula s the following statements are

equivalent:

1. s is a tautology.

2. s is valid in T .

3. s ∈ TL.

4. s is deducible from TL.

5. s is deducible from PL.

6. s is deducible from HL.

Proof Follows from the results in § 5.2. �

Figure 23 shows two specifications BC and BC′. BC is similar to BA in Figure 4

but uses the sort B instead of D as well as other names. This makes a significant

difference semantically since the interpretation of B is fixed. BC′ extends BC

with the axioms Impl and Equiv. Impl introduces → as defined constant. Equiv

expresses a prominent property of Boolean identity that is not subsumed by the

other axioms (as we will see soon).

Every axiom of BC′ is a tautology. Hence BC′ ⊆ TL and T is a model of BC′.

We will show that BC has two models and that T is the only model of BC′.

In the conversion proofs to come we will make tacit use of the axioms Com-

mutativity and Associativity.

Proposition 10.2 The following formulas are deducible from BC.

x ∧ x = x x ∨ x = x Idempotence

x ∧ 0 = 0 x ∨ 1 = 1 Dominance

© G. Smolka 104 2007/7/19

Specification BC

Constants 0,1 : B

¬ : B → B

∧ ,∨ : B → B → B

Notation x := ¬x

Axioms x ∧ y = y ∧ x Commutativity

x ∨ y = y ∨ x

(x ∧y)∧ z = x ∧ (y ∧ z) Associativity

(x ∨y)∨ z = x ∨ (y ∨ z)

x ∧ (y ∨ z) = (x ∧y)∨ (x ∧ z) Distributivity

x ∨ (y ∧ z) = (x ∨y)∧ (x ∨ z)

x ∧ 1 = x Identity

x ∨ 0 = x

x ∧ x = 0 Complement

x ∨ x = 1

Specification BC′

Extends BC

Defined Constant x → y = x ∨y Impl

Axiom (x = y) = (x → y)∧ (y → x) Equiv

Figure 23: Specifications BC and BC′

Proposition 10.3 BC∪ {0 = 1} ⊢ x = y

Proof Follows with Identity and Dominance. �

Proposition 10.4 For every model A of BC: A0 ≠A1.

Proof Immediate consequence of the preceding proposition since B must be in-

terpreted as the 2-element set B. �

The next proposition will be very useful for showing that tautologies with

negations are deducible from BC.

Proposition 10.5 (UoC: Uniqueness of Complements) For all formulas s, t:

s = t
BC
⊢⊣ s ∧ t = 0, s ∨ t = 1

© G. Smolka 105 2007/7/19

Proof The direction from left to right follows with Complement. The other di-

rection can be shown with the following conversion proof:

s = s ∧ 1 Identity

= s ∧ (t ∨ t) Complement

= s ∧ t ∨ s ∧ t Distributivity

= 0∨ s ∧ t s ∧ t = 0

= t ∧ t ∨ s ∧ t Complement

= (t ∨ s)∧ t Distributivity

= 1∧ t s ∨ t = 1

= t Identity �

Proposition 10.6 The following formulas are deducible from BC.

x ∧ y = x ∨y x ∨ y = x ∧y deMorgan

1 = 0 0 = 1 Negation

x = x Double Negation

Proof Follows with UoC. �

Proposition 10.7 BC has exactly two models. One interprets the constants of BC

as the structure T does, the other in the dual way: 0 as 1, 1 as 0, ¬ as negation,

∧ as disjunction, and ∨ as conjunction.

Proof By Proposition 10.4 we know that every modelA of BC must satisfy either

A0 = 0, A1 = 1 or A0 = 1, A1 = 0. By Identity and Dominance we know that

there is no choice for ∧ and ∨ once the interpretation of 0 and 1 is fixed. By

Negation we know the same for ¬. �

A Boolean formula is a propositional formula that does not contain the con-

stants → and =.

Proposition 10.8 (0-1)

For every closed Boolean formula s: BC ⊢ s=0 or BC ⊢ s=1.

Proof By induction on |s|. If s = 0 or s = 1, the claim follows by Ref. If s = ¬t,

we use induction for t and Negation. If s = s1∧s2 or s = s1∨s2, we use induction

for s1 and s2 and then Identity or Dominance. �

Proposition 10.9 For every propositional formula s there exists a Boolean for-

mula t such that BC′ ⊢ s = t.

© G. Smolka 106 2007/7/19

Proof The constants → and = can be eliminated with the axioms Impl and

Equiv. �

Proposition 10.10 (E1) (x = 1) = x is deducible from BC′.

Proposition 10.11 T is the only model of BC′.

Proof By Proposition 10.10 we know that (1 = 1) = 1 is deducible from BC′.

Hence every model of BC′ must interpret 1 as 1 since the interpretation of the

identies is fixed. Now the claim follows with Proposition 10.7 and the fact that

T is a model of BC′. �

10.2 Expansion and Completeness

Lemma 10.12 Let s be a Boolean formula and x a name of type B. Then:

BC ⊢ x ∧ s = x ∧ [x:=1]s

Proof By induction on |s|. �

Lemma 10.13 Let s be a Boolean formula and x a name of type B. Then:

BC ⊢ x ∧ s = x ∧ [x:=0]s

Proof By induction on |s|. �

Proposition 10.14 (Expansion) Let s be a Boolean formula and x a name of

type B. Then: BC ⊢ s = x ∧ [x:=0]s ∨ x ∧ [x:=1]s

A Boolean tautology is a Boolean formula that is a tautology.

Proposition 10.15 (Boolean Completeness) For every Boolean tautology s:

BC ⊢ s = 1.

Proof By induction on the number of names of type B occurring in s. �

Proposition 10.16 (Completeness) TL ⊢⊣ BC′.

© G. Smolka 107 2007/7/19

	The Language of Higher-Order Logic
	Functions
	Boolean Connectives
	Quantification
	Identities
	Sets as Functions
	Intensional and Extensional Interpretation
	Types and Terms
	Notational Conventions

	Terms and Types
	Untyped Terms
	Axiomatization
	Basic Properties
	Reduction
	Subterms
	Recursive Definitions and the Canonical Name Convention
	Construction of a Term Structure
	Typed Terms
	Well-typed Terms
	Preterms

	Specifications and Models
	Motivating Example: Groups
	Interpretations and Evaluations
	Semantic Equivalence and Correctness of the - and -Law
	Formulas and Specifications
	Boolean Algebras
	Specification of Logical Operations
	Specification of the Natural Numbers
	Properties of Terms and Specifications

	Deduction
	Entailment Relations
	Proof Systems
	Replacing Equals with Equals
	Basic Proof System and Deductive Entailment
	Subsumed Deduction Rules
	Conversion

	Propositional Logic
	Specification PL
	Tautological Completeness
	BCA Equivalents
	Hypothetical Conversion Proofs
	Case Analysis

	Higher-Order Propositional Completeness
	Denotational Completeness
	Definitional Extensions
	Deductive Completeness
	Higher-Order Identities

	Identities and Quantifiers
	Specification HL
	Quasi-Conversion
	Quantifier Laws
	Correctness of Henkin's Reduction
	Backward Proofs
	Turing's Law and Cantor's Law
	Quantified Replacement
	Choice and Skolem

	Tableaux
	Hybrid Tableaux
	Hybrid Tableau Proofs
	First-order Tableaux

	Prime Trees and BDDs
	Prime Trees
	Algorithms
	BDDs

	First-Order Propositional Completeness
	BC and BC'
	Expansion and Completeness

