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Abstract
The de Bruijn representation of syntax with binding is com-
monly used, but flawed when it comes to recursion. As the
structural recursion principle associated to an inductive type
of expressions is unaware of the binding discipline, each re-
cursive definition requires a separate proof of compatibility
with variable instantiation. We solve this problem by extend-
ing Allais’ notion of syntax traversals to obtain a framework
for instantiation-compatible recursion. The framework is
general enough to handle multivariate, potentially mutually
recursive syntactic systems.
With our framework we define variable renaming and

instantiation, syntax directed typing and certain unary logi-
cal relations for System F. These definitons lead to concise
proofs of type preservation, as well as weak and strong nor-
malisation.
Our framework is designed to serve as the theoretical

foundation of future versions of the Autosubst Coq library.
All developments and case studies are formalised in the Coq
proof assistant.

CCS Concepts • Theory of computation→ Automated
reasoning; Type theory; Operational semantics;

Keywords well-scoped de Bruijn representation, recursion
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1 Introduction
The formal treatment of syntactic systems à la de Bruijn [7]
consists of two parts: a first-order, nameless representation
of syntactic expressions that encodes variables as numer-
ical indices and, second, a binding discipline which gives
meaning to this encoding. The intended notion of variable
instantiation is a recursively defined syntactic operation that
applies a parallel substitution, that is, a functional mapping
from indices to expressions, to an expression. In this design,
α-equivalence reduces to plain syntactic equality and es-
sential substitution lemmas can be obtained through basic
equational reasoning [1, 22]. For these reasons, de Bruijn syn-
tax has been used repeatedly and successfully in the mech-
anisation of programming language metatheory in proof
assistants like Coq [14, 23].

There is, however, one major drawback: the structural re-
cursion principle associated with the abstract datatype (ADT)
of syntactic expressions fails to respect the binding discipline.
As such, the recursor is mostly useless when it comes to syn-
tactic operations which are expected to be compatible with
variable renaming and instantiation. These include renaming
and instantiation itself, syntax translations, logical relations
and syntax directed inference systems. With the basic recur-
sor, compatibility has to be established manually for each
recursive definition.
Our goal is a framework that, given the de Bruijn rep-

resentation of a syntacic system, yields the right notion of
a recursor. It should, in particular, allow for the definition
of syntactic operations that are compatible with renaming
and instantiation by construction. A first step towards a
solution is Allais et al.’s observation that most syntactic
binder-respecting operations recursively traverse expres-
sions in a very similar way [3], in particular with respect to
the handling of binders. The common definitional structures
are captured in Allais’ work with the notion of an abstract
syntax traversal. A traversal consists of semantic construc-
tors that mirror their syntactic counterparts of a well-scoped
de Bruijn expression type [2, 6]. Evaluation with respect to a
traversal is then an abstract way of assigning, to each syn-
tactic variable and expression, a denotation taken from an
indexed family of types. Allais et al. give uniform definitions
of renaming, instantiation, a CPS-transformation and the
structures underlying various normalisation-by-evaluation
proofs in terms of syntax traversals.

https://doi.org/10.1145/3167098
https://doi.org/10.1145/3167098
https://doi.org/10.1145/3167098
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We extend Allais’ results about structural commonalities
to the study of properties and theorems that can be estab-
lished generically for traversals and related structures. We
start with a straightforward proof that Allais’ traversals are
compatible with the renaming of variables by construction.
Compatibility with instantiation is more involved, though.
Since traversals use distinct denotation domains for variables
and expressions, they cannot express the desired equality.
We identify a lifting operation that coalesces the two domains
and thus allows us to formulate instantiation compatibility.
Further, instantiation can be expressed as the lifting of the
renaming traversal which clarifies the connection between
the two operations.
The proof of instantiation compatibility relies on certain

naturality conditions on the semantic constructors. We re-
fer to a traversal that satisfies these conditions as a model.
We further identify a subclass of traversals, called simple
traversals, that omit all syntactic scope annotations. Sim-
ple traversals are always fully natural and therefore models.
Many recursive definitions, with the notable exceptions of
renaming and instantiation, are captured by this subclass.

We also propose to extend traversals and models to multi-
variate syntactic systems, i.e. syntactic systems that consist
of several, potentially mutually recursive, syntactic sorts
which each may contain their own class of variables. While
evaluation with respect to a univariate model requires a sin-
gle environment for the single class of free variables, we now
require vectors of environments. When we consider multi-
variate instantiation in terms of such a traversal, it becomes
clear that instantiation with vectors of parallel substitutions
is the natural form of instantiation for multivariate syntac-
tic systems. This observation supports the ideas presented
in [14].
To demonstrate our framework, we include various case

studies that concern the metatheory of System F. We use
traversals to define typing and certain unary logical relations
which are by construction compatible with instantiation. We
then exploit these properties to obtain elegant proofs of
preservation of typing and weak and strong normalisation.

A further application considers the renaming and instan-
tiation traversals themselves. Application of the compat-
ibility lemma yields compositionality of substitutions for
free. This compositionality constitutes an integral part of
the equational theory of the Autosubst Coq library [22, 23].
The remaining parts of the Autosubst equational theory are
obtained in a simplified manner through our framework as
well.

We conjecture that our framework is fully automatable.
The denotation-parametric type of traversals, the naturality
conditions for models, the concrete traversal structures for
renaming and instantiation and the generic compatibility
proofs and embedding lemmas are all fully determined by
the underlying syntactic system. It is therefore conceivable
to automatically generate these constructions from concise

system descriptions, like for example the HOAS specifica-
tions proposed in [14]. We plan to incorporate this approach
into a future version of the Autosubst library.

In summary, our contributions are as follows:

• Aproof that abstract syntax traversals overwell-scoped
de Bruijn syntax à la Allais respect renaming by con-
struction (Theorem 3.5).
• The idea that traversals support a notion of lifting (Sec-
tion 3.3), as exemplified by the lifting of renaming to
instantiation (Definition 3.10), and a generic embed-
ding lemma that connects the two (Theorem 3.12).
• We identify a class of traversals, called models, that
exhibit certain naturality conditions (Section 3.4), to-
gether with a proof that such models are by definition
compatible with instantiation (Theorem 3.15).
• An extension of the framework to multivariate, poten-
tially mutually recursive syntactic systems (Section 5).
• Elegant proofs of weak normalisation (Section 9) and
preservation of typing (Section 7) for a call-by-value
variant of System F.
• A proof of strong normalisation (Section 10) of a stan-
dard presentation of System F.

Accompanying Coq development. The development of the
framework and the case studies are formalised in the Coq
proof assistant. The Coq development is available at
http://www.ps.uni-saarland.de/extras/cpp18-rec.

2 Preliminaries
Throughout this work we use a call-by value variant of Sys-
tem F (FCBV) as our example syntactic system. FCBV concisely
showcases the complications that arise from potentially mu-
tual dependencies between various sorts of a given system.
While its sort of types is univariate and has a single binding
constructor, the sorts of terms and values are multivariate,
containing both type and value variables with two corre-
sponding binders. In particular, the absence of term variables
implies that β-reduction can only substitute values, which
makes this a call-by-value system.
In the following we briefly introduce FCBV together with

the basic building blocks and notational conventions used
in this work. We use a notion of well-scoped de Bruijn syn-
tax [2], that is we use N-indexed inductive type families
to represent syntactic sorts. The syntax of FCBV with full
scope annotations is shown in Figure 1. The scopes, written
as superscripts, are exclusive upper bounds on the freely
occurring variables of certain sorts. All our constructions
are designed to track and respect scoping but for the sake
of readability we usually only annotate the types, not the
expressions and operations.
Following de Bruijn [7], we encode variables as indices

taken from a finite k-element type Ik with the index x ∈ Ik
referencing the xth enclosing binder of the corresponding

http://www.ps.uni-saarland.de/extras/cpp18-rec
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Ak ,Bk ∈ tyk ::= xkty | A
k → Bk | ∀. Ak+1 x ∈ Ik

sk,l , tk,l ∈ tmk,l ::= sk,l tk,l | sk,l Ak | vk,l

uk,l ,vk,l ∈ vlk,l ::= xk,lvl | λA
k . sk,l+1 | Λ. sk+1,l x ∈ I l

Figure 1.Well-Scoped Syntax of FCBV.

scope, counting upwards and starting from 0. Where nec-
essary, we use a sort subscript to distinguish a syntactic
variable, xkty ∈ tyk , from the underlying element of the fi-
nite type x ∈ Ik . We express the type variable constructor
explicitly as idty , and similarly for the value variables.
Renamings ξ , ζ : In → Im map variables into variables

and we write A⟨ξ ⟩ for the recursive operation that applies ξ
simultaneously to all free variables of A. For injective renam-
ings we write In ↪→ Im . As an example, consider the shift
injection ↑n : In ↪→ In+1 which often occurs in conjunction
with the element 0n+1 denoting the index not in the image
of ↑n .
We further require type substitutions σ : In → tyk and

value substitutions τ : Im → vlk,l which, similarly to re-
namings, are applied in parallel to types, terms and values,
written A[σ ], s[σ ,τ ] and v[σ ,τ ] respectively.

The free indices of an expression of scope k are interpreted
in environments ρ,θ : Ik → Vm , where V : N→ Type is an
indexed family of types. Finite types I and the sort ty are
both examples of such type families.

With respect to substitutions and environmentswe borrow
two basic operations from the σ -calculus [1]. Composition,
written ξ ◦ σ , corresponds to forward function composition.
The second operation is extension, also referred to as cons
and written An ·σ . Given σ : Ik → tyn , we obtain a substitu-
tionAn ·σ : Ik+1 → tyn whichmaps 0k+1 toAn , and (↑ x )k+1

to σ x . The equational theory that governs these operations
for the univariate case, is discussed in detail in [1, 22]. First
steps towards a similar theory for the multivariate setting
are taken in [14].

3 A Framework for Recursion over Syntax
with Binding

In this section we extend the syntax traversals of Allais
et al. [3] into a general mechanism for defining structurally
recursive functions on the types of FCBV while respecting
instantiation.
After recalling the idea of a syntax traversal with minor

variations, we focus on renamings. We prove that renaming
is functorial and that each traversal is compatible with re-
naming. We then generalise the relation between renaming
and instantiation into a lifting construction for traversals.
This allows us to state precisely in what sense evaluation is
compatible with instantiation. Finally, we refine the notion

of syntax traversal into the notion of a syntactic model1. As
key property, we prove that evaluating a term with respect
to a model is compatible with instantiation.

3.1 Type Traversals
The notion of a syntax traversal was introduced by Allais
et al. [3], as an analog for structural recursion on syntactic
types with binders. Traversals consist of a traversal structure
that contains all data necessary to define a recursive func-
tion and an evaluation function that performs the recursion.
Throughout this section we consider ty-traversals, that is
traversals for the types of FCBV. When the underlying sort is
clear from the context we drop the prefix. The signature TVD
of traversal structures is parametric in two indexed type
families V ,D : N → Type which we refer to as denotation
domains for indices and, respectively, type expressions.

Definition 3.1. A ty-traversal T = (V,A,Q) : TVD for the
types of FCBV consists of semantic counterparts to the syn-
tactic constructors.

V : ∀n. V n → Dn

A : ∀n. Dn → Dn → Dn

Q : ∀m. (∀n. (Im ↪→ In ) → V n → Dn ) → Dm

Since the main arguments of the semantic constructors
fully determine the scope parameters, we keep them implicit
and never explicitly abstract or instantiate them.

To evaluate a type with respect to a traversal, indices have
to be lifted into different scopes. We hence need additional
structure on the index denotations V .

Definition 3.2. A graded domain consists of a domain
V : N→ Type together with a thinning operation

_▷V _ : ∀mn.Vm → (Im ↪→ In ) → V n .

We omit the subscript on the thinning operation, when the
domain is clear from the context. When the image of an envi-
ronment ρ is graded, we lift the thinning operation to ρ and
write ρ ▷ ξ for ρ ◦ (_▷ ξ ). A graded domain is compositional
if thinning respects compositions x ▷ ξ ▷ ζ = x ▷ ξ ◦ ζ . It is
functorial, if it is compositional and thinning respects iden-
tities, x ▷ id = x . A graded domain is injective if thinning
_▷ ξ is injective for all ξ .

The family I of finite types with thinning x ▷ ξ = ξ x , as
well as any constant family λn.T for a fixed typeT are exam-
ples of injective, functorial graded domains. Every composi-
tional, injective graded domain is automatically functorial.

Definition 3.3. Let T = (V,A,Q) : TVD be a ty-traversal
where V is a graded domain. Evaluation J_KT_ with respect

1So called, since it is almost a presheaf model.
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to T is defined recursively as follows.
J_KT_ : tym → (Im → V n ) → Dn

JxtyKTρ = V (ρ x )

JA→ BKTρ = A JAKTρ JBKTρ
J∀. AKTρ = Q(λξ v .JAKTv ·(ρ ▷V ξ ) )

3.2 Renaming
We recall the definition of renaming as a traversal from [3].

Definition 3.4 (Renaming). We define the renaming traver-
sal Rty = (V,A,Q) : TIty with

V = idty
A = _→ _
Q = λ F . (∀. F ↑ 0).

Renaming of variables according to ξ is evaluation with re-
spect to Rty and environment ξ :

A⟨ξ ⟩ := JAKRty

ξ

This definition of renaming satisfies the usual recursive
equations of renaming:

xty⟨ξ ⟩ = (ξ x )ty

(A→ B)⟨ξ ⟩ = A⟨ξ ⟩ → B⟨ξ ⟩

(∀. A)⟨ξ ⟩ = ∀. A⟨0 · ξ ▷ ↑⟩

We now prove, that all traversals are compatible with this
definition of renaming.

Theorem 3.5 (Compatibility with Renaming). For an arbi-
trary ty-traversal T = (V,A,Q) : TVD , type A : tyk , renaming
ξ : Ik → Im and environment ρ : Im → V n we have

JA⟨ξ ⟩KTρ = JAKTξ ◦ ρ .

Proof. By induction on A. The cases for variables and func-
tion types are trivial. The case of quantification (∀. A) follows
from the inductive hypothesis and simple equational reason-
ing.

J(∀. A)⟨ξ ⟩KTρ = Q(λ ζ v . JA⟨0 · ξ ▷ ↑⟩K
T
v · ρ ▷ ζ )

= Q(λ ζ v . JAKT(0 · ξ ▷↑) ◦ (v · ρ ▷ ζ ) )

= Q(λ ζ v . JAKTv ·((ξ ◦ ρ ) ▷ ζ ) )

= J∀. AKTξ ◦ ρ □

Note that types form a graded domain with renaming
as thinning. With Theorem 3.5 it follows that renaming is
compatible with composition and hence thinning on types
is compositional.

Corollary 3.6. A⟨ξ ⟩⟨ζ ⟩ = A⟨ξ ◦ ζ ⟩

Additionally, types are an injective graded domain and
therefore functorial.

Lemma 3.7. Renaming _⟨ξ ⟩ under an injection ξ is injective.

Proof. By induction on types. □

Corollary 3.8. A⟨id⟩ = A

3.3 Lifting Traversals
There is an asymmetry in the definition of traversals which
allows us to distinguish between semantic indices and seman-
tic expressions. As argued in [3], this asymmetry is crucial to
defining e.g. the renaming traversal. If bothV andD have the
structure of a graded domain then an asymmetric traversal
can be lifted into a symmetric one.

Definition 3.9. Let T = (V,A,Q) : TVD be a ty-traversal for
graded domains V ,D. We define the lifted traversal

T := (id,A,Q) : TDD
with

Q := λ F . Q (λ ξ v . F ξ (Vv )).

A traversal is uniform if it is equal to its own lifting, T = T.
In particular, T is always uniform since lifting is idempotent.

Since types form a graded domain with renaming as thin-
ning, we can define instantiation as the lifting of renaming.

Definition 3.10. We define the instantiation of a
type A : tym under a substitution σ : Im → tyn as follows.

A[σ ] := JAKRty
σ

Instantiation then satisfies the usual equations.

xty[σ ] = σ x

(A→ B)[σ ] = A[σ ]→ B[σ ]
(∀. A)[σ ] = ∀. A[0ty ·(σ ◦ _⟨↑⟩)]

Under mild conditions, a traversal embeds into its lifting.

Definition 3.11. A semantic variable constructor
V : ∀n.V n → Dn for two graded domainsV and D is natural
if it is compatible with thinning.

(Vx ) ▷D ξ = V(x ▷V ξ )

Theorem3.12 (Embedding Lemma). Let T = (V,A,Q) : TVD
be a ty-traversal where V and D are graded domains and V is
natural. Then evaluation with respect to T is a special case of
evaluation with respect to T.

JAKTρ = JAKTρ ◦ V

Proof. By induction on A. In the case of quantification we
use that V is natural. □

3.4 Type Models
In Section 3.2, we proved that evaluation with respect to
an arbitrary traversal is compatible with renaming. In this
section, we extend traversals to the notion of a model by re-
quiring every semantic constructor to be natural. Evaluation
with respect to a model always respects instantiation.
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Definition 3.13 (Model). Let V ,D be graded domains. A
ty-traversal T = (V,A,Q) : TVD is a model if all operations
are natural in the following sense.
• V is natural in the sense of Definition 3.11.
• (AAB) ▷D ξ = A (A▷D ξ ) (B ▷D ξ )
• Q is natural for all natural F . We say that F is natural
if (F ζ x ) ▷D ξ = F (ζ ◦ ξ ) (x ▷V ξ ) for all ξ , ζ ,x and
Q is natural for F if

(Q F ) ▷D ξ = Q (F ◦ (ξ ◦ _)).

The naturality conditions in the definition of a model are
chosen to obtain a naturality statement for evaluation, which
is essential for compatibility with instantiation.

Lemma 3.14. For all models T : TVD , where V ,D are graded
domains and V is compositional, we have

JAKTρ ▷D ξ = JAKTρ ▷V ξ .

Proof. By induction onA, using the corresponding naturality
conditions in the definition of model. □

From Lemma 3.14 we obtain compatibility with instantia-
tion.

Theorem 3.15 (Compatibility with instantiation). For all
models T : TVD , where V ,D are graded domains and V is com-
positional, we have

JA[σ ]KTρ = JAKTJσ KTρ

where evaluation lifts point-wise to substitutions: JσKTρ =
λn.Jσ nKTρ .

Proof. By induction on A. In the case of quantification, we
use Lemma 3.14. □

At this point we also note a frequently useful lemma,
namely that the lifting of a model is itself a model.

Lemma 3.16. For every model T, the traversal T is a model.

4 Case Study: Instantiation on Types
As a first example of our framework, we consider the in-
stantiation operation on types. Since instantiation can be
represented as a traversal it is automatically compatible with
renaming (Theorem 3.5).

Corollary 4.1. A⟨ξ ⟩[σ ] = A[ξ ◦ σ ]

Furthermore, it is easy to see that the renaming traversal is
a model. Together with Lemma 3.16 we obtain the following
theorems about instantiation.

Lemma 4.2. The renaming traversal Rty is a model.

Proof. The cases of type variables and function types hold
by definition. For quantification, we can assume that we
are given a function F such that (F ζ x )⟨ξ ⟩ = F (ζ ◦ ξ ) (ξx )

holds and we have to show that Q is natural for F . This
follows by equational reasoning.

(Q F )⟨ξ ⟩ = (∀. F ↑ 0)⟨ξ ⟩
= ∀. (F ↑ 0)⟨0ty · ξ ◦ ↑⟩
= ∀. F (ξ ◦ ↑) 0
= Q (λζ . F (ξ ◦ ζ )) □

Since the instantiation traversal corresponds to lifted re-
naming, renaming can be directly shown to be a special case
of instantiation. Moreover, the core substitution lemmas of
Autosubst hold.

Corollary 4.3 (Renaming as instantiation).

A⟨ξ ⟩ = A[ξ ◦ idty]

Proof. By the embedding theorem (Theorem 3.12). □

Corollary 4.4. A[idty] = A

Proof. By Corollary 3.8, Corollary 4.3 and the embedding
theorem (Theorem 3.12). □

Corollary 4.5. A[σ ][σ ′] = A[σ ◦ _[σ ′]]

Proof. By Theorem 3.15. □

In light of Corollary 4.4, we observe that Theorem 3.12
can be seen as a special case of Theorem 3.15 with slightly
weaker assumptions.

5 Multivariate Traversals and Models
The definitions of traversals and models presented in Sec-
tion 3 only apply to syntactic systems with a single sort and
a single class of variables. We illustrate the generalisation
to mutually recurive and multivariate sorts by extending
our framework from the types of System F to its terms and
values.

Both type and value variables appear, and we thus require
semantic domains for type indices Vty and value indices Vvl.
Additionally, due to the mutual recursion between terms and
values, the traversals for terms and values have to be defined
as a single traversal structure with semantic domains for
both term expressionsDtm and value expressionsDvl. Finally,
terms and values contain types, which means that we also
require a semantic domain for types Dty.

The generalised definitions may look daunting at first, but
the extensions are mostly mechanical. Well-scoped syntax is
tremendously helpful when piecing together the various def-
initions. In the following we replicate the results of Section 3
without reiterating the corresponding motivations.

Definition 5.1. For given Vty,Vvl,Dty : N → Type and
Dvl,Dtm : N→ N→ Type, a tm/vl-traversal

E = (I,Atm,Aty,Vvl,Ltm,Lty) : T
Vty,Vvl

Dty,Dtm,Dvl
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I : ∀mn. Dm,n
vl → Dm,n

tm

Atm : ∀mn. Dm,n
tm → Dm,n

tm → Dm,n
tm

Aty : ∀mn. Dm,n
tm → Dm

ty → Dm,n
tm

Vvl : ∀mn. Vm,n
vl → Dm,n

vl

Ltm : ∀mn. Dm
ty → (DVvl

tm )
m,n → Dm,n

vl

Lty : ∀mn. (D
V̂ty
tm )m,n → Dm,n

vl

where V̂m,n
ty := Vm

ty

(PQ )m,n := ∀m′n′. (Im ↪→ Im
′

) → (In ↪→ In
′

) →

Qm′,n′ → Pm
′,n′

Js tKT,Eρ,θ := Atm JsKT,Eρ,θ JtKT,Eρ,θ

Js AKT,Eρ,θ := Aty JsKT,Eρ,θ JAKTρ

JvKT,Eρ,θ := I JvKT,Eρ,θ

JxvlKT,Eρ,θ := Vvl (θ x )

JλA. sKT,Eρ,θ := Ltm JAKTρ (λξ ζ v . JsK
T,E
ρ ▷ ξ ,v ·(θ ▷ (ξ ,ζ )) )

JΛ. sKT,Eρ,θ := Lty (λξ ζ v . JsKT,Ev ·(ρ ▷ ξ ),θ ▷ (ξ ,ζ ) )

Figure 2. Semantic constructors for terms and values of FCBV (left) and definition of evaluation (right).

for terms and values of FCBV consists of semantic counter-
parts to the syntactic constructors (see Figure 2 for the cor-
responding types).

Given a traversal structure E for terms and values as well
as a traversal structure T for types, we define evaluation with
respect to T, E by mutual recursion for both terms and values.
As for types, this definition requires a notion of thinning
on semantic (value) indices. Since the types differ we have
to adapt the notion of graded domains to this setting. This
adaption is completely mechanical (cf. Definition 3.2).

Definition 5.2. A bigraded domain consists of a family of
typesV : N→ N→ Type together with a thinning operation

_▷ (_, _) : Vm,n → (Im ↪→ Im
′

) → (In ↪→ In
′

) → Vm′,n′ .

We again lift the thinning operation to environments ρ and
write ρ ▷ (ξ , ζ ) for ρ ◦ (_▷ (ξ , ζ )).

A bigraded domain is compositional, if thinning respects
compositions x ▷ (ξ , ζ ) ▷ (ξ ′, ζ ′) = x ▷ (ξ ◦ ξ ′, ζ ◦ ζ ′), func-
torial, if it is compositional and thinning respects identities
x ▷ (id, id) = x , and injective if thinning _▷ (ξ , ζ ) is injective
for all ξ , ζ .

Definition 5.3. Let T = (Vty,A,Q) : T
Vty

Dty
be a ty-traversal

and E = (I,Atm,Aty,Vvl,Ltm,Lty) : T
Vty,Vvl

Dty,Dtm,Dvl
be a tm/vl-

traversal, where Vty and Vvl are a graded and bigraded do-
mains respectively. Evaluation J_KT,E_,_ with respect to T, E is
defined by mutual recursion.

J_KT,E_,_ : tmm,n→(Im → Vm′
ty )→(In → V n′

vl ) → Dm′,n′
tm

J_KT,E_,_ : vlm,n
→(Im → Vm′

ty )→(In → V n′
vl ) → Dm′,n′

vl

The defining equations are given in Figure 2. The two eval-
uation functions can be disambiguated by the type of their
first argument.

The following aspects are worth pointing out. First, when-
ever we reach a variable we have to project the correct com-
ponent of the vector of environments, e.g.

JxvlKT,Eρ,θ = Vvl (θ x )

for value variables.
Second, when a given subexpression is of a different sort,

we have to select the correct evaluation function, traver-
sal structures and environments. Take for example Js AKT ,Eρ,θ
where the correct environment for instantiating the subterm
A is ρ. The change of evaluation functions also occurs on the
embedding of values into terms JvKT,Eρ,θ , where we use v to
both denote the actual value, as well as its embedding into
the sort of terms.

Third, andmost interesting, the traversal of binders changes
the interpretation of indices in scope. We have to adjust the
full environment which is more involved than in the single-
sorted setting. The component that corresponds to the sort
of the binder we just traversed, say ρ, is modified almost as
before. While the index 0k+1 is mapped to the newly bound
value v as usual, we have to ensure that ↑ x is mapped to
ρ x and then adjusted according to the scope change of the
vector renaming (ξ , ζ ). The postcomposed adjustment may
have to be cast to the appropriate subvector. Consider for
example the type component, where (ξ , ζ ) is simplified to ξ .
As before, certain naturality conditions on traversals are

necessary to obtain compatibility with instantiation.

Definition 5.4. A tm/vl-traversal is a model if every se-
mantic constructor is natural with respect to the graded and
bigraded domains Vty,Dty,Vvl,Dvl,Dtm. For example, for I
we must have (Iv ) ▷Dtm ξ = I(v ▷Dvl ξ ).

We omit a complete listing of the naturality conditions for
space reasons.

Finally the construction of lifting and renaming proceeds
as before.
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Definition 5.5. Let T = (Vty,A,Q) : T
Vty

Dty
be a ty-traversal

and E = (I,Atm,Aty,Vvl,Ltm,Lty) : T
Vty,Vvl

Dty,Dtm,Dvl
be a tm/vl-

traversal, whereVty,Vvl,Dty,Dtm,Dvl are graded and bigraded
domains respectively.

We define the lifted traversal

E = (I,Atm,Aty, id,L′tm,L
′
ty) : T

Dty,Dvl

Dty,Dtm,Dvl

where L′tm,L′ty are defined as follows.

L′tm := λAF . LtmA (λξ ζ v . F ξ ζ (Vvlv ))

L′ty := λF . Lty (λξ ζ v . F ξ ζ (Vtyv ))

The renaming traversal simply uses the syntactic construc-
tors as semantic constructors.

Definition 5.6 (Renaming). We define the renaming traver-
sal Rvl = (I,Atm,Aty,Vvl,Ltm,Lty) where Vty = I , Dty = ty,
Vvlmn = In , Dvl = vl, and Dtm = tm.

Vvl x := x Atm s t := s t

Aty s A := s A Iv := v

LtmAF := λA. F id ↑ 0 Lty F := Λ. F ↑ id 0

As before, we define renaming as evaluation with the
renaming traversal.

s⟨ξ , ζ ⟩ := JsKRty,Rvl

ξ ,ζ

Terms and values form a bigraded domain under renaming
and we define instantiation as evaluation with the lifted
renaming traversal.

s[σ ,τ ] := JsKRty,Rvl
σ ,τ

In particular, instantiation under a type substitution σ and a
value substitution τ satisfies the following equations.

x[σ ,τ ] = τ v
(s t )[σ ,τ ] = s[σ ,τ ] t[σ ,τ ]
(s A)[σ ,τ ] = s[σ ,τ ]A[σ ]

(λA. s )[σ ,τ ] = λA[σ ]. s[σ , 0 · (τ ▷ (id,↑)]
(Λ. s )[σ ,τ ] = Λ. s[0 · (σ ▷ ↑),τ ▷ (↑, id)]

This reproduces the definition of instantiation for FCBV
from [14]. We proceed as before and show that every traver-
sal is compatible with renaming.

Theorem 5.7. Let T and E be a ty-traversal and a tm/vl-
traversal respectively. For all terms s , renamings ξ , ζ and envi-
ronments ρ, ρ ′ we have

Js ▷ (ξ , ζ )KT,Eρ,ρ′ = JsKT,Eξ ◦ρ,ζ ◦ρ′ .

If the semantic variable constructors are natural, we obtain
another embedding lemma.

Theorem 5.8. Let T be a ty-traversal with the semantic vari-
able constructor Vty and E a tm/vl-traversal with the semantic
variable constructorVvl such that bothVty andVvl are natural.
For all terms and values s and environments ρ, ρ ′ we have

JsKT,Eρ,ρ′ = JsKT,Eρ◦Vty,ρ◦Vvl
.

Finally, we obtain compatibilitywith instantiation formod-
els as desired.

Theorem 5.9. Let T and E be a type model and a term and
value model respectively, for which the graded domain of types
Dty and values Dvl are compositional. For all terms and values
s , type substitutions σ , value substitutions τ and environments
ρ, ρ ′ we have

Js[σ ,τ ]KT,Eρ,ρ′ = JsKT,E
Jσ KTρ ,Jτ KT,Eρ,ρ′

where Jτ KT,Eρ,ρ′ = λn.Jτ nKT,Eρ,ρ′ .

6 Case Study: Instantiation Laws for FCBV
Analogous to Section 4, we consider the instantiation opera-
tion on terms and values.

Using Theorem 5.7, we show that renaming on FCBV terms
and values is compatible with instantiation.

Corollary 6.1. For all terms and values s we have

s⟨ξ , ζ ⟩[σ ,τ ] = s[ξ ◦ σ , ζ ◦ τ ].

For the remainder we note that the renaming traversal is
natural, and therefore a model. The proof is analogous to
Lemma 4.2.

Lemma 6.2. The renaming traversal Rvl is a model.

Using Lemma 6.2 we instantiate the theorems from Sec-
tion 5 for term and value instantiation.

Corollary 6.3. s⟨ξ , ζ ⟩ = s[ξ ◦ idty, ζ ◦ idvl]

Proof. By Theorem 5.8. □

Corollary 6.4. s[idty, idvl] = s

Proof. By Corollary 6.3 with functoriality of renaming. □

Corollary 6.5. s[σ ,τ ][σ ′,τ ′] = s[σ ◦ _[σ ′],τ ◦ _[σ ′,τ ′]]

Proof. By Theorem 5.9. □

These theorems are the main substitution lemmas needed
for the equational theory of Autosubst 2 [14].

7 Case Study: System F Type Preservation
In Figure 3 we present the typing judgment of FCBV as an
inductive type. Formally, the type system consists of two
mutually inductive predicates.

_ ⊢ _ : _ : (In → tym ) →tmm,n → tym→ Prop

_ ⊢v _ : _ : (In → tym ) → vlm,n
→ tym→ Prop
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Γ ⊢ s : A→ B Γ ⊢ t : A
Γ ⊢ s t : B

Γ ⊢ s : ∀. A
Γ ⊢ s B : A[B · idty]

Γ ⊢v v : A
Γ ⊢ v : A

Γ ⊢v xvl : Γx

A · Γ ⊢ s : B
Γ ⊢v λA. s : A→ B

Γ ▷ ↑ ⊢ s : A
Γ ⊢v Λ. s : ∀. A

s ⇓ λA. b t ⇓ u
b[idty,u · idvl] ⇓ v

s t ⇓ v

s ⇓ Λ. b
b[A · idty, idvl] ⇓ v

s A ⇓ v v ⇓ v

Figure 3. Type System and big-step evaluation relation for
FCBV.

Since typing in FCBV is syntax directedwe can alternatively
define it recursively using a traversal. This traversal turns
out to be natural. We thus obtain structural properties of the
typing relation.

Definition 7.1. We define the typing traversal

J = (I,Atm,Aty,Vvl,Ltm,Lty) : T
ty,V
ty,D,D

where value indices are interpreted by Vm,n := tym and
term expressions are interpreted by Dm,n := tym → Prop as
follows

I P := P

B ∈ Atm P Q := ∃A. P (A→ B) ∧Q A

C ∈ Aty P A := ∃B. P (∀. B) ∧C = B[A · idty]
B ∈ VvlA := (A = B)

(A→ B) ∈ LtmC F := (A = C ) ∧ F id idAB

(∀. A) ∈ Lty F := A ∈ F ↑ id 0

We call evaluation with the typing traversal recursive typing
and use the following abbreviations.

tpvl Γv A = A ∈ JvKRty,J
idty,Γ

tptm Γ aA = A ∈ JsKRty,J
idty,Γ

Note that the typing traversal is not uniform, since we
interpret value indices as types, but value expressions as
predicates on types. We note some properties of the defini-
tion of tp.

tptm Γv A = tpvl Γv A
tptm Γ (s t ) B = ∃A. tptm Γ s (A→ B) ∧ tptm Γ t A

tptm Γ (s A)C = ∃B. tptm Γ s (∀. B) ∧C = B[A · idty]
tpvl Γ x A = (Γ x = A)

tpvl Γ (λA. s ) (A→ B) = tptm (A · Γ) s B

tpvl Γ (Λ. s ) (∀. A) = tptm (Γ ▷ ↑) s A

Based on these properties, it is easy to see that tp coincides
with the inductive typing relation.

Lemma 7.2. Inductive and recursive typing coincide.

tpvl Γv A = (Γ ⊢v v : A)
tptm Γ s A = (Γ ⊢ s : A)

In the remainder of this section, we state all results in
terms of the more familiar inductive typing judgment.

From the definition as a traversal we obtain both weaken-
ing and strengthening.

Corollary 7.3 (Weakening & Strengthening).
(A · Γ ⊢ s⟨id,↑⟩ : B) ↔ (Γ ⊢ s : B).

Proof. By Theorem 5.7. □

Lemma 7.4 (Naturality of Typing). The typing traversal is
natural.

Proof. By case analysis, using properties of renaming. Note
that D is an injective bigraded domain with the action given
by the image under renaming of types.Most cases are straight-
forward, but the application case depends crucially on the
injectivity of the renaming. □

We obtain weakening and strengthening for type variables
as a consequence of naturality.

Corollary 7.5 (Type Weakening and Strengthening).
(Γ ▷ ↑ ⊢ s⟨↑, id⟩ : (A▷ ↑)) ↔ (Γ ⊢ s : A)

For all further consequences, we consider evaluation in
the lifted typing traversal.

Definition 7.6. WewriteTpR s A for evaluation in the lifted
typing traversal, where R : In → tym → Prop is a relation
between variables and types.

Tpvl Rv A := A ∈ JvKRty,J
idty,R

Tptm R s A := A ∈ JsKRty,J
idty,R

We refer to Tp as relational typing. In some instances it is
useful to also vary the type substitution environment and
we define

Tpσ R s A := A ∈ JsKRty,J
σ ,R .

Apart from the cases for binders and variables, the defi-
nitions of recursive and relational typing coincide. For vari-
ables and binders, relational typing satisfies the following
equations.

Tpvl R x A = R x A

Tpvl R (λA. s ) (A→ B) = Tptm ((A = _) · R) s B
Since the typing traversal is natural, relational typing ex-
tends the ordinary typing judgment, and is compatible with
instantiation in a stronger sense than what is possible for
the typing judgment.
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Corollary 7.7. Γ ⊢ s : A = Tp (Γ _ = _) s A

Proof. By Theorem 5.8. □

Corollary 7.8. TpR s[idty,τ ]A ↔ Tp (τ ◦ TpR) s A

Proof. By Theorem 5.9. □

Before we can show type preservation for FCBV, we need a
monotonicity lemma for relational typing. Relational typing
is obviously monotone in the relational context, since it is
only ever extended or used in the variable case. We further
generalise the statement of monotonicity by considering
types as ordered under specialisation.

Lemma 7.9 (Monotonicity). For all relations R, S and type
substitutions σ such that

R x A → S x A[σ ]

we have
TpR s A → Tpσ S s A[σ ].

Proof. By induction on s and equational reasoning. □

We now proceed to show type preservation of FCBV.

Theorem 7.10. For all terms s and values v such that s ⇓ v ,
we have

Γ ⊢ s : A → Γ ⊢v v : A

Proof. By Corollary 7.7, it suffices to show the statement for
relational typing.

Tptm R s A → Tpvl Rv A

We proceed by induction on the derivation of s ⇓ v . The case
for values is trivial. For an application Tptm R (s t ) B we know
that Tptm R s (A → B) and TpR t A hold for some A. From
the definition of evaluation, we have s ⇓ (λA. b), t ⇓ u, and
b[idty,u · idvl] ⇓ v . Hence by induction, we have Tpvl Ru A
and Tpvl R (λA. b) (A→ B), or equivalently, Tptm ((A = _) ·
R) b B.

We have to show that Tpvl Rv B holds, and by induction
it suffices to show Tptm R b[idty,u · idvl]B. At this point we
are in a position to use Corollary 7.8. We have

TpR b[idty,u · idvl]B = Tp (TpRu · R) b B

and the result follows from Lemma 7.9, since we already
have Tptm ((A = _) · R) b B and TpRu A.
The proof of type application is analogous. □

Type preservation is a well-studied problem and the proof
of Theorem 7.10 usually requires a context morphism lemma
such as the following.

Lemma 7.11 (Context Morphism Lemma). For all contexts
Γ,∆ and substitutions σ ,τ such that

∀x . ∆ ⊢ τ x : (Γ x )[σ ]

we have
Γ ⊢ s : A → ∆ ⊢ s[σ ,τ ] : A[σ ].

Proof. By Corollary 7.7 and Theorem 5.9 it suffices to show
that Tpσ (τ ◦ (∆ ⊢ _ : _)) s A[σ ] holds. This follows from
monotonicity (Lemma 7.9), since we have Tp (Γ_ = _) s A by
Corollary 7.7, and the assumption on Γ,∆ is exactly what we
need to satisfy the premise of Lemma 7.9. □

From the proof of Lemma 7.11 we see that the context
morphism lemma factors into monotonicity and the com-
patibility with instantiation for relational typing. What is
striking about this development is that a proof of a context
morphism lemma typically requires several inductions, since
we have to follow the recursive structure of the instantiation
operation [15].
It is also usually difficult to obtain strengthening results,

such as the ones we obtain for typing in the left-to-right
directions of Corollary 7.3 and 7.5. We obtain strengthening
almost for free, simply by formulating typing as a traversal.
The left-to-right direction of Corollary 7.8 is similarly

unusual and only possible with relational typing. Consider
the problem of establishing a judgement Γ ⊢ s[idty,τ ] : A.
It is not sufficient to type check s in a context compatible
with τ as in the premise of Lemma 7.11. In general, such a
context might fail to exist, even when the term s[idty,τ ] is
typable. This problem vanishes for relational typing, since
the relational context allows us to assign no types to some
variables.

In this case, the lifting construction has identified an ex-
tension of the ordinary typing judgment which is arguably
better behaved. For more evidence of this, note that the
proofs of Theorem 7.10 and Lemma 7.11 start by invoking
the embedding theorem and showing the result for relational
typing. In particular, type preservation also holds for rela-
tional typing and there seems to be no need for a separate
context morphism lemma, since relational typing is more
strictly compatible with instantiation.

8 Simple Traversals and Liftings
To obtain a model (Definition 3.13), users have to provide
both a traversal and various naturality proofs. For recursive
functions that do not reinterpret variables after the traversal
of a binder, the naturality proofs can be omitted. In this
section, we present the subclass of simple traversals that are
sufficient to handle these scenarios. Simple traversals turn
out to be compatible with both renaming and instantiation
without additional user-provided naturality proofs.

Definition 8.1 (Simple Traversal). A simple type traversal
structure T = (VS ,AS ,QS ) : TVSDS

consists of non-dependent
semantic counterparts to the syntactic constructors.

VS : VS → DS
AS : DS → DS → DS
QS : (VS → DS ) → DS

We can easily turn the types VS and DS into constant
graded domains V := λ_. VS and respectively D := λ_. DS .
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This allow us to embed simple traversals into regular traver-
sals.

Definition 8.2 (Embedding of Simple Traversals). Let T =
(VS ,AS ,QS ) : TVsDs

be a simple traversal. Then T is a special
case of the regular traversal T′ : Tλ_. VSλ_. DS

, where the non-
binding semantic constructors simply ignore the index. The
semantic constructor for quantification uses the identity
renaming for rescoping:

Q := λ F .QS (λv .F idv )

In the remaining paper, we often leave this coercion im-
plicit.

Most importantly, all simple traversals are models w.r.t. to
the constant action on D.

Lemma 8.3. A simple traversal is a model w.r.t. the constant
action on D.

Proof. Most conditions follow as the action has no effect on
the result type. In the case of a binder, we require functional
extensionality and naturality of F . □

Corollary 8.4. Let T = (VS ,AS ,QS ) : TVsDs
be a simple tra-

versal. Then T is compatible with instantiation.

See Sections 9 and 10 for examples where simple traversals
simplify the proof structure significantly. The above results
can be easily extended to the multivariate case.

9 Case Study: Weak Normalisation of
System FCBV

We apply the results of Section 8 to showweak normalisation
of System F with call-by-value reduction. See Figure 3 for
the definition of typing and reduction. The proof proceeds
by constructing a unary logical relation over F types which
can be seen as a compositional extension of the notion of
weak normalisation. We build the logical relation as a simple
traversal and obtain all of the necessary structural properties
for free.

Definition 9.1. We define the uniform simple type traversal
W = (id,AR ,QR ) : TP vl0,0

P vl0,0
interpreting types by sets of

closed values where

(λC . b) ∈ AR P Q := ∀v ∈ P . b[idty,v · idvl] ∈ LQ
(Λ. b) ∈ QR F := ∀PA. b[A · idty, idvl] ∈ L(F P )

s ∈ L P := ∃v . s ⇓ v ∧ P v .

We use the following abbreviations for W evaluation and its
extension to sets of closed terms.

V A ρ := JAKWρ
EA ρ := L(V A ρ)

By definition of evaluation we have the following recur-
sive equations forV, E.

v ∈ V X ρ = v ∈ ρ X

(λC . b) ∈ V (A→ B)ρ = ∀v ∈ V A ρ . b[idty,v · idvl] ∈ E B ρ

(Λ. b) ∈ V (∀. A)ρ = ∀PA. b[A · idty, idvl] ∈ EA (P · ρ)

s ∈ EA ρ = ∃v . s ⇓ v ∧v ∈ V A ρ

The corresponding weakening and substitution lemmas
follow from Theorem 8.4.

Corollary 9.2.

V A⟨↑⟩ (P · ρ) = V A ρ

V A[σ ] ρ = V A (λi .V (σ i )ρ)

We proceed by extending the interpretation of types to
open values and terms by quantifying over all closing sub-
stitutions.

Definition 9.3. For typing contexts Γ : In → tym and
environments ρ : Im → P vl0,0 we define

σ ∈ C Γ ρ = ∀i . σ i ∈ V (Γ i ) ρ

given a typeA : tym we defined the semantic value and term
typing as

Γ ⊨v v : A := ∀στρ . σ ∈ C Γ ρ → v[σ ,τ ] ∈ V A ρ

Γ ⊨ s : A := ∀στρ . σ ∈ C Γ ρ → s[σ ,τ ] ∈ EA ρ.

Theorem 9.4. Syntactic typing implies semantic typing.

Γ ⊢v v : A → Γ ⊨v v : A
Γ ⊢ s : A → Γ ⊨ s : A

Proof. By induction on the typing derivation. The cases for
variables, application and the embedding of values into terms
hold by definition. The case for lambda abstractions follows
from general facts about instantiation, while the cases for
type application and type abstraction require both reasoning
about instantiation as well as Corollary 9.2. □

For closed terms, the premise of semantic typing is trivially
satisfied and we obtain weak normalisation of well-typed
terms.

Corollary 9.5. Closed, well-typed terms evaluate to values.

⊢ s : A → ∃v . s ⇓ v

What is striking about this proof of normalisation is that it
rests entirely on our general theory of traversals and requires
no specific lemmas. Once all definitions are in place, the proof
of Theorem 9.4 proceeds directly, using only general facts
about instantiation and evaluation.
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10 Case Study: Strong Normalisation of
System F

In this chapter we outline a proof of strong normalisation
for System F, following Girard [12]. For technical reasons23
we consider the syntax of full System F with constants.

A,B ∈ ty ::= X | A→ B | ∀. A Types
s, t ∈ tm ::= x | s t | s A | λA. s | Λ. s | c Terms

We omit the discussion of the framework for System F, since
it is completely analogous to the presentation for FCBV in
Section 5.
We write s ⇝ t for the standard single-step reduction

relation of System F. The typing judgment of System F is
defined by an inductive predicate Γ ⊢ s : A in exactly the
same way as for FCBV, omitting the distinction between value
and term typing and the rule for switching between the
two. We write SN s to express that the term s is strongly
normalising.

The general structure of the proof remains the same as in
Section 9. We define a logical relation as a simple traversal
and obtain all of the usual structural properties for free. The
main difference is that the definition of the logical relation
is slightly more involved and that we have to quantify over
terms in arbitrary scopes, instead of only considering closed
values.

Definition 10.1. A term s is neutral iff it is not an abstrac-
tion, s , λA. b and s , Λ. b.

Definition 10.2 (Reducibility candidates). For any fixed
m,n we say that a predicate P : P tmm,n is reducible if it
contains only strongly normalising terms, is closed under
reduction, and is closed under expansion of neutral terms. P
is reducible iff

1. P s implies SN s
2. P s , s⇝ t imply P t
3. for neutral s , we have P s whenever P t for all s⇝ t .

We write RCm,n for the type of reducible predicates. An
environment ρ : Im → tmm′,n′ → Prop is admissible if ρ x
is reducible for all x .

Definition 10.3. For any fixedm,n, we define the uniform
simple type traversal S = (id,AR ,QR ) : TP (tm

m,n )
P (tmm,n )

interpret-
ing types by sets of terms with a fixed number of type and
value variables where

f ∈ AR P Q := ∀s ∈ P . ( f s ) ∈ Q
f ∈ QR F := ∀(B : tym ) (P ∈ RCm,n ). f B ∈ F P .

We write EA ρ for S evaluation.

2For FCBV, we only have value instantiation and cannot formulate full
β -reduction.
3Without constants the logical relation for closed terms contains no neutral
terms.

The corresponding weakening and instantiation lemmas
follow from the analogue of Theorem 8.4. In addition to this,
we need a technical lemma to show strong normalisation.
We omit the proof, as it is unrelated to any syntactic property
of E.

Lemma 10.4. If ρ is admissible, then EA ρ is reducible.

Definition 10.5. For contexts Γ : In → tym , types A : tym ,
and terms s : tmm,n we define the semantic typing judgment
Γ ⊨ s : A as follows.

Γ ⊨ s : A := ∀m′n′ (ρ : Im → RCm
′,n′ ) σ τ .

(∀x . τ x ∈ E (Γ x ) ρ) → s[σ ,τ ] ∈ EA ρ

Theorem 10.6. Syntactic typing implies semantic typing.

Γ ⊢ s : A → Γ ⊨ s : A

Proof. By induction on the typing derivation. The cases for
variables and application follow from the definitions, while
the case for type application makes use of Lemma 10.4 and
compatibility with instantiation. In the case of abstraction
and type abstraction we show closure under expansion by
a nested induction using Lemma 10.4. The remainder of
the proof follows using substitution lemmas analogous to
Section 6, which hold for System F with nearly identical
proofs. □

Corollary 10.7. Well-typed terms are strongly normalising.

Γ ⊢ s : A → SN s

11 Implementation
The development of the paper is formalised in Coq, using
the ssreflect tactic language [13]. For simplicity we use func-
tional and propositional extensionality throughout the de-
velopment, instead of setoids.

Many design decisions in this paper are directly moti-
vated by the formalisation. For instance, we have introduced
graded domains and bigraded domains as separate concepts.
Instead, we could have considered both as instantiations of
the same concept, either as degenerate functors, or using
dependent types as functions with a variable number of ar-
guments. However, both generalisations behave poorly in
practice. Functors introduce tuple arguments in the multi-
variate case, and the lack of η-reduction for tuples in the Coq
standard library leads to annoyances in the formalisation.
Using dependent types is feasible, but leads to complicated
proof goals when some types are not fully normalised.

Autoubst 2. We consider the formalisation as a prototype
for a new version of Autosubst 2 [14]. As such, we have
split the formalisation into two parts: the first dealing with
sort-specific, but general, framework lemmas, the second
with more specialised case studies. We hope to automate this
first part in the future and to provide a comprehensive set
of tactics to automate proofs in user code.



CPP’18, January 8–9, 2018, Los Angeles, CA, USA Jonas Kaiser, Steven Schäfer, and Kathrin Stark

In the formalisation, we show various rewriting rules as
part of the framework. We prove the substitution lemmas
from Autosubst 2 [14], together with the rewriting rules of
the σ -calculus as in [22]. Combined with the framework
lemmas, this yields an effective and sufficient automation
tactic for our case studies.

Using this automation, together with the notion of simple
traversals, we have produced a weak normalisation proof for
FCBV with only 14 lines of (otherwise manual) proof script.
This is the shortest normalisation proof we have ever pro-
duced using Autosubst in Coq. For comparison, the analo-
gous proof with Autosubst 1 takes 65 lines of proof script.
We are confident that our approach can be generalised

to automatically generate proofs out of second-order HOAS
syntax as in [14].

Well-scopedness. Our syntax is well-scoped, i.e. syntactic
sorts are represented as N-indexed inductive type families
to track an upper bound on the free variable indices. In con-
trast to the common assumption that this complicates the
formalisation we found that it actually helped us in formulat-
ing the correct statements. A common pitfall with ordinary
de Bruijn syntax is extensive arithmetic reasoning on the
variable indices, which tends to guide users to rather un-
intuitive theorem statements and proofs. Adding scopes to
the representation types of course complicates this ill-fated
approach. We made the intentional choice to add in this
perceived complication to deter users from suboptimal rea-
soning techniques. On the other hand, those primitives that
work well with well-scoped syntax are incidentally those
taken from the σ -calculus and they appear to be sufficient to
formalise elegant de Bruijn proofs. Hence we believe, that
being restricted to this set of operations is in fact a good
thing and therefore part of our user interface.

In contrast, we avoid tracking object-level types, i.e. we do
not adopt well-typed syntax. While this would provide even
stronger guarantees, it would also lead to additional com-
plications for certain object-level type system. For example,
well-typed syntax for dependently-typed syntactic systems
requires quotient inductive-inductive types [4], which are
unavailable in Coq.

Limitations. In this work we consider syntactic systems
with at most two sorts of variables, and correspondingly
only introduce the notions of graded and bigraded domains.
Gradedness can be generalised to the n-ary setting, extrapo-
lating from the ideas shown in Section 5. These changes are
mechanical, but rather technical and without further insight.

Our automation for traversals relies on its syntax-directed
structure. For example, non-syntax directed type systems
cannot be written as a traversal.

12 Related Work
There is a wealth of literature on the topics of syntax with
binders and associated recursors (see [5, 8, 9] for an overview).
In the following, we briefly summarise those which are most
relevant to our approach.

Syntax traversals. The idea of syntax traversals goes back
at least to McBride [18] and Pouillard and Pottier [21]. The
former paper directly inspired the already mentioned [3].
In [21], compatibility with renaming is declared one main
motivation. This result is obtained via parametric methods
and the notion of world-polymorphic functions, of which
traversals are one instance.
All in all, this paper is strongly inspired by and heavily

indebted to the elegant representation of syntax traversals
of Allais et al. [3]. In contrast to [3], we fold the notion of
thinning into the abstract evaluation with respect to graded
denotation domains. Allais gives a direct formulation of in-
stantiation as a traversal , while we obtain it via a general
notion of traversal lifting, thereby clarifying the connection
of the two operations. In addition, lifting plays an integral
part in our proof that natural traversals are generally com-
patible with instantiation.

Further differences are our ability to handle multivariate,
mutually inductive sorts and the restriction of thinnings to
injective renamings. The latter allows us to show naturality
of the type system traversal J of FCBV. Several other interest-
ing traversals in [3] illustrate the beauty of the underlying
principle.

Automation. Autosubst 2 [14] is a library for de Bruijn syn-
tax in Coq that lifts the ideas of theσ -calculus [1] to themulti-
variate setting. It takes a concise second-order HOAS system
description and generates de Bruijn syntax, capture-avoiding
instantiation based on vectors of parallel substitutions and a
decision procedure for assumption-free substitution lemmas.
The decision procedure currently handles instances s = t
where s and t consist of terms, renamings, and instantia-
tions. Here we suggest an extension: our goal is to handle
instances s = t where s and t may involve arbitrary structure-
preserving traversals. Our framework yields the foundation
for this. It allows us to derive the existing structures of Au-
tosubst 2 as special instances of more general results such
as the embedding and compatibility theorems. The incorpo-
ration of our framework into Autosubst 2 is planned for the
near future.

Automating type systems. With Needle & Knot [16, 17],
Keuchel et al. have introduced the first system which can
automate large parts of type preservation proofs in Coq.
This is done by elaborating a specification language contain-
ing relations parameterised over a type with binders into
de Bruijn representations. We have shown that for syntax
directed type systems (Section 7), we obtain large parts of
this automation by formulating type systems as models.
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It might be interesting to explore if our framework can
be extended to more general type systems. Currently, every
type system defined with a traversal must necessarily satisfy
strengthening which can be limiting.

Presheaf models. A functorial graded domain can naturally
be seen as a presheaf over a category of (injective) carte-
sian contexts [10]. We obtain a presheaf model if we embed
proofs of naturality into each operation of a traversal. For
example, a model for types yields morphisms for variables
(V : HomV D), arrows (A : Hom (D×D) D) and quantifiers
(Q : HomDV D).

This is remarkably similar to Fiore et al.’s [10] notion of
an algebra for a binding signature. More precisely, Fiore et
al. consider models with V = I specifically, and show that
this choice has strong universality properties. Note that only
our case study on renaming fits directly into this schema.
It is striking that we have been lead so closely to a cate-

gorical approach to recursion for syntax with binding, even
though we started our investigation from first principles.
Compared to an ordinary presheaf model, our framework
exhibits the following differences.

• We consider “unnatural” transformations in traversals,
since this leads to better reduction behavior when we
implement evaluation in Coq.
• We only require compositionality, not functoriality, to
show compatibility with instantiation and naturality of
evaluation. All other results do not need any structural
properties of thinning.
• We separate traversals and naturality conditions and
only require the graded domain structure on semantic
indices for evaluation. As the graded domain structure
on terms is renaming, this is crucial to define renaming
within the same framework.

Programming with binders. In [11, 20], the authors for-
malise properties about shallow embeddings of many-sorted,
possibly infinitary syntax in Isabelle. An inductively defined
pretype of a universal algebra for bindings is introduced and
a quotient up to α-equivalence ensures the intended inter-
pretation of binding. The quotient construction requires a
notion of “goodness” and conditions on the type of variables.
Note that this quotient construction is already built into the
de Bruijn representation of syntax. The framework is based
on freshness and single-point substitution. Though a wealth
of theorems are proven, no equational theory is recognisable.
Two definitions of models are suggested: while semantic

domains seem to coincide with our notion of simple models,
freshness-substitution models show parallels to our defi-
nition of a model. However, in contrast to our approach,
freshness-substitution models ask the user to provide a sig-
nificant amount of structure.

Pientka [19] takes a different approach to programming
with binders, by changing the underlying type theory to in-
clude a notion of contexts, which are related to instantiation.
In this approach, recursive functions can be written using
higher-order pattern matching and executed by elaborating
into a de Bruijn representation. It might be possible to elab-
orate some subset of these “contextual” definitions in terms
of traversals and models, in order to avoid any changes to
the underlying type theory. However, many open questions
remain and we delegate a thorough exploration of these
concepts to future work.

13 Conclusion
We have introduced a framework that systematically derives
a binder aware recursor for the scope-safe de Bruijn encoding
of non-trivial syntactic systems. The design extends current
ideas of [3] via naturality to syntactic models, introduces
a notion of traversal lifting, admits multivariate expression
sorts and allows for mutual dependencies between multiple
sorts.

At the same time, this construction supplements the Auto-
subst framework with a theoretical foundation for increased
proof power.We are currently in the process of incorporating
our framework into the implementation of Autosubst 2 [14].
We are confident that this paves the way towards better
automation and moves us one step closer to elegant mecha-
nisable metatheory in Coq.
We also consider a much more detailed comparison of

the various proposed ways to formally deal with syntactic
systems that involve binding. The goal would be to establish
a solid theoretical foundation for the general mechanisation
and automation of metatheory.
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